LDpred-funct#

LDpred-funct uses functional annotation to improve prediction. It leverages LDSC to calculate heritability.

Installation#

First, ensure you have Python 2 installed. You can create a Python 2.7 environment using conda:

conda create -n mypython2env python=2.7

You also need to install the required packages: h5py, scipy, and libplinkio. You can install libplinkio using pip (see the pip quickstart guide):

pip install plinkio

Next, clone the LDpred-funct repository:

git clone https://github.com/carlaml/LDpred-funct.git

Heritability Estimation#

To estimate per-SNP heritability inferred using S-LDSC, you’ll need files from the [baselineLD model](https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays/LDSCORE/baseline_v1.1_hg38_annots?pageState=(“StorageObjectListTable”:(“f”:”%255B%255D”)).

Download the files from the [baselineLD model](https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays/LDSCORE/baseline_v1.1_hg38_annots?pageState=(“StorageObjectListTable”:(“f”:”%255B%255D”)) and place them in the LDSCFILES folder within the current working directory where this notebook or code is located.

Hyperparameters#

LDpred-funct offers multiple hyperparameters, but we considered the following:

  • hapmapmodels = ["hapmap", "full"]: hapmap restricts SNPs to HapMap only, which is not recommended for datasets with a limited number of SNPs. full considers all SNPs.

  • ldpredbins = ["2", "10"]: This represents the bin size used by LDpred-funct.

For more details, visit the LDpred-funct GitHub repository.

Important Note#

Important note: If the number of variants between the GWAS and bfile is limited, the code may not work properly. In such scenarios, please review the logs.

GWAS File Processing for LDpred-funct#

LDpred-funct requires the GWAS file in a specific format as:

Summary statistics file. Please check that the summary statistics contains a column for each of the following fields (header is important here, important fields are highlighted in bold font, the order of the columns is not important). carlaml/LDpred-funct

  • CHR: Chromosome

  • SNP: SNP ID

  • BP: Physical position (base-pair)

  • A1: Minor allele name (based on whole sample)

  • A2: Major allele name

  • P: Asymptotic p-value

  • BETA: Effect size

  • Z: Z-score (default). If instead of Z-score the Chi-square statistic is provided, use the flag –chisq, and CHISQ as the column field.

LDSC requires the GWAS in a specific format, so we will generate two GWAS files: one for LDSC to calculate heritability and another for LDpred-funct to calculate PRS. bulik/ldsc

Example GWAS format for LDSC:

MarkerName

Allele1

Allele2

Freq.Allele1.HapMapCEU

p

N

rs10

a

c

0.0333

0.708

80566

rs1000000

g

a

0.6333

0.506

123865

rs10000010

c

t

0.425

0.736

123827

rs10000012

c

g

0.8083

0.042

123809

Note For both binary and continouse phenotypes, we considered BETAS and convert OR to BETAS.

Note Download LDSC bulik/ldsc

To download and set up LDSC (Linkage Disequilibrium Score Regression), follow these steps:

Open your terminal and run the following command:

git clone https://github.com/bulik/ldsc.git

Download the LDSC files required for heritability calculation and store them in the LDSCFILES/ directory.

  1. w_hm3.snplist.bz2

    Download from: w_hm3.snplist.bz2

  2. baselineLD

    Download from: baselineLD

Ensure that you store the downloaded files in the LDSCFILES/ directory.

It should have the following files.

.
├── baseline
│   ├── baselineLD.10.annot.gz
│   ├── baselineLD.10.l2.ldscore.gz
│   ├── baselineLD.10.l2.M
│   ├── baselineLD.10.l2.M_5_50
│   ├── baselineLD.10.log
│   ├── baselineLD.11.annot.gz
│   ├── baselineLD.11.l2.ldscore.gz
│   ├── baselineLD.11.l2.M
│   ├── baselineLD.11.l2.M_5_50
│   ├── baselineLD.11.log
│   ├── baselineLD.12.annot.gz
│   ├── baselineLD.12.l2.ldscore.gz
│   ├── baselineLD.12.l2.M
│   ├── baselineLD.12.l2.M_5_50
│   ├── baselineLD.12.log
│   ├── baselineLD.13.annot.gz
│   ├── baselineLD.13.l2.ldscore.gz
│   ├── baselineLD.13.l2.M
│   ├── baselineLD.13.l2.M_5_50
│   ├── baselineLD.13.log
│   ├── baselineLD.14.annot.gz
│   ├── baselineLD.14.l2.ldscore.gz
│   ├── baselineLD.14.l2.M
│   ├── baselineLD.14.l2.M_5_50
│   ├── baselineLD.14.log
│   ├── baselineLD.15.annot.gz
│   ├── baselineLD.15.l2.ldscore.gz
│   ├── baselineLD.15.l2.M
│   ├── baselineLD.15.l2.M_5_50
│   ├── baselineLD.15.log
│   ├── baselineLD.16.annot.gz
│   ├── baselineLD.16.l2.ldscore.gz
│   ├── baselineLD.16.l2.M
│   ├── baselineLD.16.l2.M_5_50
│   ├── baselineLD.16.log
│   ├── baselineLD.17.annot.gz
│   ├── baselineLD.17.l2.ldscore.gz
│   ├── baselineLD.17.l2.M
│   ├── baselineLD.17.l2.M_5_50
│   ├── baselineLD.17.log
│   ├── baselineLD.18.annot.gz
│   ├── baselineLD.18.l2.ldscore.gz
│   ├── baselineLD.18.l2.M
│   ├── baselineLD.18.l2.M_5_50
│   ├── baselineLD.18.log
│   ├── baselineLD.19.annot.gz
│   ├── baselineLD.19.l2.ldscore.gz
│   ├── baselineLD.19.l2.M
│   ├── baselineLD.19.l2.M_5_50
│   ├── baselineLD.19.log
│   ├── baselineLD.1.annot.gz
│   ├── baselineLD.1.l2.ldscore.gz
│   ├── baselineLD.1.l2.M
│   ├── baselineLD.1.l2.M_5_50
│   ├── baselineLD.1.log
│   ├── baselineLD.20.annot.gz
│   ├── baselineLD.20.l2.ldscore.gz
│   ├── baselineLD.20.l2.M
│   ├── baselineLD.20.l2.M_5_50
│   ├── baselineLD.20.log
│   ├── baselineLD.21.annot.gz
│   ├── baselineLD.21.l2.ldscore.gz
│   ├── baselineLD.21.l2.M
│   ├── baselineLD.21.l2.M_5_50
│   ├── baselineLD.21.log
│   ├── baselineLD.22.annot.gz
│   ├── baselineLD.22.l2.ldscore.gz
│   ├── baselineLD.22.l2.M
│   ├── baselineLD.22.l2.M_5_50
│   ├── baselineLD.22.log
│   ├── baselineLD.2.annot.gz
│   ├── baselineLD.2.l2.ldscore.gz
│   ├── baselineLD.2.l2.M
│   ├── baselineLD.2.l2.M_5_50
│   ├── baselineLD.2.log
│   ├── baselineLD.3.annot.gz
│   ├── baselineLD.3.l2.ldscore.gz
│   ├── baselineLD.3.l2.M
│   ├── baselineLD.3.l2.M_5_50
│   ├── baselineLD.3.log
│   ├── baselineLD.4.annot.gz
│   ├── baselineLD.4.l2.ldscore.gz
│   ├── baselineLD.4.l2.M
│   ├── baselineLD.4.l2.M_5_50
│   ├── baselineLD.4.log
│   ├── baselineLD.5.annot.gz
│   ├── baselineLD.5.l2.ldscore.gz
│   ├── baselineLD.5.l2.M
│   ├── baselineLD.5.l2.M_5_50
│   ├── baselineLD.5.log
│   ├── baselineLD.6.annot.gz
│   ├── baselineLD.6.l2.ldscore.gz
│   ├── baselineLD.6.l2.M
│   ├── baselineLD.6.l2.M_5_50
│   ├── baselineLD.6.log
│   ├── baselineLD.7.annot.gz
│   ├── baselineLD.7.l2.ldscore.gz
│   ├── baselineLD.7.l2.M
│   ├── baselineLD.7.l2.M_5_50
│   ├── baselineLD.7.log
│   ├── baselineLD.8.annot.gz
│   ├── baselineLD.8.l2.ldscore.gz
│   ├── baselineLD.8.l2.M
│   ├── baselineLD.8.l2.M_5_50
│   ├── baselineLD.8.log
│   ├── baselineLD.9.annot.gz
│   ├── baselineLD.9.l2.ldscore.gz
│   ├── baselineLD.9.l2.M
│   ├── baselineLD.9.l2.M_5_50
│   └── baselineLD.9.log
├── freq
│   ├── 1000G.EUR.QC.10.frq
│   ├── 1000G.EUR.QC.11.frq
│   ├── 1000G.EUR.QC.12.frq
│   ├── 1000G.EUR.QC.13.frq
│   ├── 1000G.EUR.QC.14.frq
│   ├── 1000G.EUR.QC.15.frq
│   ├── 1000G.EUR.QC.16.frq
│   ├── 1000G.EUR.QC.17.frq
│   ├── 1000G.EUR.QC.18.frq
│   ├── 1000G.EUR.QC.19.frq
│   ├── 1000G.EUR.QC.1.frq
│   ├── 1000G.EUR.QC.20.frq
│   ├── 1000G.EUR.QC.21.frq
│   ├── 1000G.EUR.QC.22.frq
│   ├── 1000G.EUR.QC.2.frq
│   ├── 1000G.EUR.QC.3.frq
│   ├── 1000G.EUR.QC.4.frq
│   ├── 1000G.EUR.QC.5.frq
│   ├── 1000G.EUR.QC.6.frq
│   ├── 1000G.EUR.QC.7.frq
│   ├── 1000G.EUR.QC.8.frq
│   └── 1000G.EUR.QC.9.frq
├── weights
│   ├── weights.10.l2.ldscore.gz
│   ├── weights.11.l2.ldscore.gz
│   ├── weights.12.l2.ldscore.gz
│   ├── weights.13.l2.ldscore.gz
│   ├── weights.14.l2.ldscore.gz
│   ├── weights.15.l2.ldscore.gz
│   ├── weights.16.l2.ldscore.gz
│   ├── weights.17.l2.ldscore.gz
│   ├── weights.18.l2.ldscore.gz
│   ├── weights.19.l2.ldscore.gz
│   ├── weights.1.l2.ldscore.gz
│   ├── weights.20.l2.ldscore.gz
│   ├── weights.21.l2.ldscore.gz
│   ├── weights.22.l2.ldscore.gz
│   ├── weights.2.l2.ldscore.gz
│   ├── weights.3.l2.ldscore.gz
│   ├── weights.4.l2.ldscore.gz
│   ├── weights.5.l2.ldscore.gz
│   ├── weights.6.l2.ldscore.gz
│   ├── weights.7.l2.ldscore.gz
│   ├── weights.8.l2.ldscore.gz
│   └── weights.9.l2.ldscore.gz
└── w_hm3.snplist.bz2

3 directories, 155 files
import os
import pandas as pd
import numpy as np
from scipy.stats import norm

def check_phenotype_is_binary_or_continous(filedirec):
    # Read the processed quality controlled file for a phenotype
    df = pd.read_csv(filedirec+os.sep+filedirec+'_QC.fam',sep="\s+",header=None)
    column_values = df[5].unique()
 
    if len(set(column_values)) == 2:
        return "Binary"
    else:
        return "Continous"
    
    
filedirec = "SampleData1"
#filedirec = "asthma_19"
#filedirec = "migraine_0"

GWAS = filedirec + os.sep + filedirec+".gz"


df = pd.read_csv(GWAS,compression= "gzip",sep="\s+")
 


if "BETA" in df.columns.to_list():
    print("Same")
    pass
else:
    df["BETA"] = np.log(df["OR"])
    print("transformed")
    
df_transformed = pd.DataFrame({
    'MarkerName': df['SNP'],
    'Allele1': df['A1'],
    'Allele2': df['A2'],
    'Freq.Allele1.HapMapCEU': df['MAF'],
    'p': df['P'],
    'N': df['N']
})

output_file = filedirec+os.sep+"LDpred_funct_LDSC.txt"
df_transformed.to_csv(output_file,sep="\t",index=False)
print(df_transformed.head())

GWAS = filedirec + os.sep + filedirec+".gz"


df = pd.read_csv(GWAS,compression= "gzip",sep="\s+")
 


 
if "BETA" in df.columns.to_list():
    pass
else:
    df["BETA"] = np.log(df["OR"])



df_transformed = pd.DataFrame({
    'CHR':df['CHR'],
    'SNP': df['SNP'],
    'BP':df['BP'],
    'A1': df['A1'],
    'A2': df['A2'],
    'BETA': df['BETA'],
    'P': df['P'],
})


# Calculate Z score from P values.
# Kindly note if you know a better way to calculate the Z values, use that method for calculating them.
z_scores = norm.ppf(1 - df_transformed['P'] / 2)
df_transformed['Z'] = z_scores

output_file = filedirec+os.sep+"_LDpred_funct.txt"
df_transformed.to_csv(output_file,sep="\t",index=False)

print(df_transformed.head())
transformed
  Allele1 Allele2  Freq.Allele1.HapMapCEU  MarkerName       N         p
0       A       G                0.369390   rs3131962  388028  0.483171
1       A       G                0.336846  rs12562034  388028  0.834808
2       G       A                0.377368   rs4040617  388028  0.428970
3       G       T                0.483212  rs79373928  388028  0.808999
4       G       A                0.450410  rs11240779  388028  0.590265
  A1 A2      BETA      BP  CHR         P         SNP         Z
0  A  G -0.002115  756604    1  0.483171   rs3131962  0.701212
1  A  G  0.000687  768448    1  0.834808  rs12562034  0.208539
2  G  A -0.002399  779322    1  0.428970   rs4040617  0.790955
3  G  T  0.002034  801536    1  0.808999  rs79373928  0.241718
4  G  A  0.001307  808631    1  0.590265  rs11240779  0.538452

Define Hyperparameters#

Define hyperparameters to be optimized and set initial values.

Extract Valid SNPs from Clumped File#

For Windows, download gwak, and for Linux, the awk command is sufficient. For Windows, GWAK is required. You can download it from here. Get it and place it in the same directory.

Execution Path#

At this stage, we have the genotype training data newtrainfilename = "train_data.QC" and genotype test data newtestfilename = "test_data.QC".

We modified the following variables:

  1. filedirec = "SampleData1" or filedirec = sys.argv[1]

  2. foldnumber = "0" or foldnumber = sys.argv[2] for HPC.

Only these two variables can be modified to execute the code for specific data and specific folds. Though the code can be executed separately for each fold on HPC and separately for each dataset, it is recommended to execute it for multiple diseases and one fold at a time. Here’s the corrected text in Markdown format:

P-values#

PRS calculation relies on P-values. SNPs with low P-values, indicating a high degree of association with a specific trait, are considered for calculation.

You can modify the code below to consider a specific set of P-values and save the file in the same format.

We considered the following parameters:

  • Minimum P-value: 1e-10

  • Maximum P-value: 1.0

  • Minimum exponent: 10 (Minimum P-value in exponent)

  • Number of intervals: 100 (Number of intervals to be considered)

The code generates an array of logarithmically spaced P-values:

import numpy as np
import os

minimumpvalue = 10  # Minimum exponent for P-values
numberofintervals = 100  # Number of intervals to be considered

allpvalues = np.logspace(-minimumpvalue, 0, numberofintervals, endpoint=True)  # Generating an array of logarithmically spaced P-values

print("Minimum P-value:", allpvalues[0])
print("Maximum P-value:", allpvalues[-1])

count = 1
with open(os.path.join(folddirec, 'range_list'), 'w') as file:
    for value in allpvalues:
        file.write(f'pv_{value} 0 {value}\n')  # Writing range information to the 'range_list' file
        count += 1

pvaluefile = os.path.join(folddirec, 'range_list')

In this code:

  • minimumpvalue defines the minimum exponent for P-values.

  • numberofintervals specifies how many intervals to consider.

  • allpvalues generates an array of P-values spaced logarithmically.

  • The script writes these P-values to a file named range_list in the specified directory.

from operator import index
import pandas as pd
import numpy as np
import os
import subprocess
import sys
import pandas as pd
import statsmodels.api as sm
import pandas as pd
from sklearn.metrics import roc_auc_score, confusion_matrix
from statsmodels.stats.contingency_tables import mcnemar

def create_directory(directory):
    """Function to create a directory if it doesn't exist."""
    if not os.path.exists(directory):  # Checking if the directory doesn't exist
        os.makedirs(directory)  # Creating the directory if it doesn't exist
    return directory  # Returning the created or existing directory

 
#foldnumber = sys.argv[1]
foldnumber = "0"  # Setting 'foldnumber' to "0"

folddirec = filedirec + os.sep + "Fold_" + foldnumber  # Creating a directory path for the specific fold
trainfilename = "train_data"  # Setting the name of the training data file
newtrainfilename = "train_data.QC"  # Setting the name of the new training data file

testfilename = "test_data"  # Setting the name of the test data file
newtestfilename = "test_data.QC"  # Setting the name of the new test data file

# Number of PCA to be included as a covariate.
numberofpca = ["6"]  # Setting the number of PCA components to be included

# Clumping parameters.
clump_p1 = [1]  # List containing clump parameter 'p1'
clump_r2 = [0.1]  # List containing clump parameter 'r2'
clump_kb = [200]  # List containing clump parameter 'kb'

# Pruning parameters.
p_window_size = [200]  # List containing pruning parameter 'window_size'
p_slide_size = [50]  # List containing pruning parameter 'slide_size'
p_LD_threshold = [0.25]  # List containing pruning parameter 'LD_threshold'

# Kindly note that the number of p-values to be considered varies, and the actual p-value depends on the dataset as well.
# We will specify the range list here.

minimumpvalue = 10  # Minimum p-value in exponent
numberofintervals = 20  # Number of intervals to be considered
allpvalues = np.logspace(-minimumpvalue, 0, numberofintervals, endpoint=True)  # Generating an array of logarithmically spaced p-values
count = 1
with open(os.path.join(folddirec, 'range_list'), 'w') as file:
    for value in allpvalues:
        file.write('pv_{} 0 {}\n'.format(float(value), float(value)))  # Writing range information to the 'range_list' file
        count = count + 1

pvaluefile = folddirec + os.sep + 'range_list'

# Initializing an empty DataFrame with specified column names
prs_result = pd.DataFrame(columns=["clump_p1", "clump_r2", "clump_kb", "p_window_size", "p_slide_size", "p_LD_threshold",
                                   "pvalue", "model","numberofpca","h2","lambda","numberofvariants(m)","Train_pure_prs", "Train_null_model", "Train_best_model",
                                   "Test_pure_prs","ldscmodel" ,"Test_null_model", "Test_best_model"])

Define Helper Functions#

  1. Perform Clumping and Pruning

  2. Calculate PCA Using Plink

  3. Fit Binary Phenotype and Save Results

  4. Fit Continuous Phenotype and Save Results

import os
import subprocess
import pandas as pd
import statsmodels.api as sm
from sklearn.metrics import explained_variance_score


def perform_clumping_and_pruning_on_individual_data(traindirec, newtrainfilename,numberofpca, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
    
    command = [
    "./plink",
    "--bfile", traindirec+os.sep+newtrainfilename,
    "--indep-pairwise", p1_val, p2_val, p3_val,
    "--out", traindirec+os.sep+trainfilename
    ]
    subprocess.call(command)
    # First perform pruning and then clumping and the pruning.

    command = [
    "./plink",
    "--bfile", traindirec+os.sep+newtrainfilename,
    "--clump-p1", c1_val,
    "--extract", traindirec+os.sep+trainfilename+".prune.in",
    "--clump-r2", c2_val,
    "--clump-kb", c3_val,
    "--clump", filedirec+os.sep+filedirec+".txt",
    "--clump-snp-field", "SNP",
    "--clump-field", "P",
    "--out", traindirec+os.sep+trainfilename
    ]    
    subprocess.call(command)

    # Extract the valid SNPs from th clumped file.
    # For windows download gwak for linux awk commmand is sufficient.
    ### For windows require GWAK.
    ### https://sourceforge.net/projects/gnuwin32/
    ##3 Get it and place it in the same direc.
    #os.system("gawk "+"\""+"NR!=1{print $3}"+"\"  "+ traindirec+os.sep+trainfilename+".clumped >  "+traindirec+os.sep+trainfilename+".valid.snp")
    #print("gawk "+"\""+"NR!=1{print $3}"+"\"  "+ traindirec+os.sep+trainfilename+".clumped >  "+traindirec+os.sep+trainfilename+".valid.snp")

    #Linux:
    command = "awk 'NR!=1{{print $3}}' {}{}{}.clumped > {}{}{}.valid.snp".format(
        traindirec, os.sep, trainfilename, 
        traindirec, os.sep, trainfilename
    )
 
    os.system(command)
    
    
    command = [
    "./plink",
    "--make-bed",
    "--bfile", traindirec+os.sep+newtrainfilename,
    "--indep-pairwise", p1_val, p2_val, p3_val,
    "--extract", traindirec+os.sep+trainfilename+".valid.snp",
    "--out", traindirec+os.sep+newtrainfilename+".clumped.pruned"
    ]
    subprocess.call(command)
    
    command = [
    "./plink",
    "--make-bed",
    "--bfile", traindirec+os.sep+testfilename,
    "--indep-pairwise", p1_val, p2_val, p3_val,
    "--extract", traindirec+os.sep+trainfilename+".valid.snp",
    "--out", traindirec+os.sep+testfilename+".clumped.pruned"
    ]
    subprocess.call(command)    
    
    
 
def calculate_pca_for_traindata_testdata_for_clumped_pruned_snps(traindirec, newtrainfilename,p):
    
    # Calculate the PRS for the test data using the same set of SNPs and also calculate the PCA.


    # Also extract the PCA at this point.
    # PCA are calculated afer clumping and pruining.
    command = [
        "./plink",
        "--bfile", folddirec+os.sep+testfilename+".clumped.pruned",
        # Select the final variants after clumping and pruning.
        "--extract", traindirec+os.sep+trainfilename+".valid.snp",
        "--pca", p,
        "--out", folddirec+os.sep+testfilename
    ]
    subprocess.call(command)


    command = [
    "./plink",
        "--bfile", traindirec+os.sep+newtrainfilename+".clumped.pruned",
        # Select the final variants after clumping and pruning.        
        "--extract", traindirec+os.sep+trainfilename+".valid.snp",
        "--pca", p,
        "--out", traindirec+os.sep+trainfilename
    ]
    subprocess.call(command)

# This function fit the binary model on the PRS.
def fit_binary_phenotype_on_PRS(traindirec, newtrainfilename,hapmapmodel,ldpredbin ,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile,h2):
    threshold_values = allpvalues

    # Merge the covariates, pca and phenotypes.
    tempphenotype_train = pd.read_table(traindirec+os.sep+newtrainfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype_train = pd.DataFrame()
    phenotype_train["Phenotype"] = tempphenotype_train[5].values
    pcs_train = pd.read_table(traindirec+os.sep+trainfilename+".eigenvec", sep="\s+",header=None, names=["FID", "IID"] + ["PC{}".format(str(i)) for i in range(1, int(p) + 1)])
    covariate_train = pd.read_table(traindirec+os.sep+trainfilename+".cov",sep="\s+")
    covariate_train.fillna(0, inplace=True)
    covariate_train = covariate_train[covariate_train["FID"].isin(pcs_train["FID"].values) & covariate_train["IID"].isin(pcs_train["IID"].values)]
    covariate_train['FID'] = covariate_train['FID'].astype(str)
    pcs_train['FID'] = pcs_train['FID'].astype(str)
    covariate_train['IID'] = covariate_train['IID'].astype(str)
    pcs_train['IID'] = pcs_train['IID'].astype(str)
    covandpcs_train = pd.merge(covariate_train, pcs_train, on=["FID","IID"])
    covandpcs_train.fillna(0, inplace=True)


    ## Scale the covariates!
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import explained_variance_score
    scaler = MinMaxScaler()
    normalized_values_train = scaler.fit_transform(covandpcs_train.iloc[:, 2:])
    #covandpcs_train.iloc[:, 2:] = normalized_values_test 
    
    
    tempphenotype_test = pd.read_table(traindirec+os.sep+testfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype_test= pd.DataFrame()
    phenotype_test["Phenotype"] = tempphenotype_test[5].values
    pcs_test = pd.read_table(traindirec+os.sep+testfilename+".eigenvec", sep="\s+",header=None, names=["FID", "IID"] + ["PC{}".format(str(i)) for i in range(1, int(p) + 1)])
    covariate_test = pd.read_table(traindirec+os.sep+testfilename+".cov",sep="\s+")
    covariate_test.fillna(0, inplace=True)
    covariate_test = covariate_test[covariate_test["FID"].isin(pcs_test["FID"].values) & covariate_test["IID"].isin(pcs_test["IID"].values)]
    covariate_test['FID'] = covariate_test['FID'].astype(str)
    pcs_test['FID'] = pcs_test['FID'].astype(str)
    covariate_test['IID'] = covariate_test['IID'].astype(str)
    pcs_test['IID'] = pcs_test['IID'].astype(str)
    covandpcs_test = pd.merge(covariate_test, pcs_test, on=["FID","IID"])
    covandpcs_test.fillna(0, inplace=True)
    normalized_values_test  = scaler.transform(covandpcs_test.iloc[:, 2:])
    #covandpcs_test.iloc[:, 2:] = normalized_values_test     
    
    
    
    
    tempalphas = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
    l1weights = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

    tempalphas = [0.1]
    l1weights = [0.1]

    phenotype_train["Phenotype"] = phenotype_train["Phenotype"].replace({1: 0, 2: 1}) 
    phenotype_test["Phenotype"] = phenotype_test["Phenotype"].replace({1: 0, 2: 1})
      
    for tempalpha in tempalphas:
        for l1weight in l1weights:

            
            try:
                null_model =  sm.Logit(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
                #null_model =  sm.Logit(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit()
            
            except:
                print("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
                continue

            train_null_predicted = null_model.predict(sm.add_constant(covandpcs_train.iloc[:, 2:]))
            
            from sklearn.metrics import roc_auc_score, confusion_matrix
            from sklearn.metrics import r2_score
            
            test_null_predicted = null_model.predict(sm.add_constant(covandpcs_test.iloc[:, 2:]))
            
           
            
            global prs_result 
            for i in threshold_values:
                try:
                    prs_train = pd.read_table(
                        traindirec + os.sep + Name + os.sep + "train_data.pv_{}.profile".format(i),
                        sep="\s+",
                        usecols=["FID", "IID", "SCORE"]
                    )
                except:
                    continue

                prs_train['FID'] = prs_train['FID'].astype(str)
                prs_train['IID'] = prs_train['IID'].astype(str)
                try:
                    prs_test = pd.read_table(
                        traindirec + os.sep + Name + os.sep + "test_data.pv_{}.profile".format(i),
                        sep="\s+",
                        usecols=["FID", "IID", "SCORE"]
                    )
                
                except:
                    continue
                prs_test['FID'] = prs_test['FID'].astype(str)
                prs_test['IID'] = prs_test['IID'].astype(str)
                pheno_prs_train = pd.merge(covandpcs_train, prs_train, on=["FID", "IID"])
                pheno_prs_test = pd.merge(covandpcs_test, prs_test, on=["FID", "IID"])
        
                try:
                    model = sm.Logit(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
                    #model = sm.Logit(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit()
                
                except:
                    continue


                
                train_best_predicted = model.predict(sm.add_constant(pheno_prs_train.iloc[:, 2:]))    
 

                test_best_predicted = model.predict(sm.add_constant(pheno_prs_test.iloc[:, 2:])) 
 
        
                from sklearn.metrics import roc_auc_score, confusion_matrix

                prs_result = prs_result.append({
                    "clump_p1": c1_val,
                    "clump_r2": c2_val,
                    "clump_kb": c3_val,
                    "p_window_size": p1_val,
                    "p_slide_size": p2_val,
                    "p_LD_threshold": p3_val,
                    "pvalue": i,
                    "numberofpca":p, 

                    "tempalpha":str(tempalpha),
                    "l1weight":str(l1weight),
                    "numberofvariants": len(pd.read_csv(traindirec+os.sep+newtrainfilename+".clumped.pruned.bim")),
                             
                    "h2model":hapmapmodel,
                    "h2":h2,
                
                    "LDpred-funct-bins":ldpredbin,         
                     

                    "Train_pure_prs":roc_auc_score(phenotype_train["Phenotype"].values,prs_train['SCORE'].values),
                    "Train_null_model":roc_auc_score(phenotype_train["Phenotype"].values,train_null_predicted.values),
                    "Train_best_model":roc_auc_score(phenotype_train["Phenotype"].values,train_best_predicted.values),
                    
                    "Test_pure_prs":roc_auc_score(phenotype_test["Phenotype"].values,prs_test['SCORE'].values),
                    "Test_null_model":roc_auc_score(phenotype_test["Phenotype"].values,test_null_predicted.values),
                    "Test_best_model":roc_auc_score(phenotype_test["Phenotype"].values,test_best_predicted.values),
                    
                }, ignore_index=True)

          
                prs_result.to_csv(traindirec+os.sep+Name+os.sep+"Results.csv",index=False)
     
    return

# This function fit the binary model on the PRS.
def fit_continous_phenotype_on_PRS(traindirec, newtrainfilename,hapmapmodel,ldpredbin ,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile,h2):
    threshold_values = allpvalues

    # Merge the covariates, pca and phenotypes.
    tempphenotype_train = pd.read_table(traindirec+os.sep+newtrainfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype_train = pd.DataFrame()
    phenotype_train["Phenotype"] = tempphenotype_train[5].values
    pcs_train = pd.read_table(traindirec+os.sep+trainfilename+".eigenvec", sep="\s+",header=None, names=["FID", "IID"] + ["PC{}".format(str(i)) for i in range(1, int(p) + 1)])
    covariate_train = pd.read_table(traindirec+os.sep+trainfilename+".cov",sep="\s+")
    covariate_train.fillna(0, inplace=True)
    covariate_train = covariate_train[covariate_train["FID"].isin(pcs_train["FID"].values) & covariate_train["IID"].isin(pcs_train["IID"].values)]
    covariate_train['FID'] = covariate_train['FID'].astype(str)
    pcs_train['FID'] = pcs_train['FID'].astype(str)
    covariate_train['IID'] = covariate_train['IID'].astype(str)
    pcs_train['IID'] = pcs_train['IID'].astype(str)
    covandpcs_train = pd.merge(covariate_train, pcs_train, on=["FID","IID"])
    covandpcs_train.fillna(0, inplace=True)


    ## Scale the covariates!
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import explained_variance_score
    scaler = MinMaxScaler()
    normalized_values_train = scaler.fit_transform(covandpcs_train.iloc[:, 2:])
    #covandpcs_train.iloc[:, 2:] = normalized_values_test 
    
    tempphenotype_test = pd.read_table(traindirec+os.sep+testfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype_test= pd.DataFrame()
    phenotype_test["Phenotype"] = tempphenotype_test[5].values
    pcs_test = pd.read_table(traindirec+os.sep+testfilename+".eigenvec", sep="\s+",header=None, names=["FID", "IID"] + ["PC{}".format(str(i)) for i in range(1, int(p) + 1)])
    covariate_test = pd.read_table(traindirec+os.sep+testfilename+".cov",sep="\s+")
    covariate_test.fillna(0, inplace=True)
    covariate_test = covariate_test[covariate_test["FID"].isin(pcs_test["FID"].values) & covariate_test["IID"].isin(pcs_test["IID"].values)]
    covariate_test['FID'] = covariate_test['FID'].astype(str)
    pcs_test['FID'] = pcs_test['FID'].astype(str)
    covariate_test['IID'] = covariate_test['IID'].astype(str)
    pcs_test['IID'] = pcs_test['IID'].astype(str)
    covandpcs_test = pd.merge(covariate_test, pcs_test, on=["FID","IID"])
    covandpcs_test.fillna(0, inplace=True)
    normalized_values_test  = scaler.transform(covandpcs_test.iloc[:, 2:])
    #covandpcs_test.iloc[:, 2:] = normalized_values_test     
    
    
    
    
    tempalphas = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
    l1weights = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

    tempalphas = [0.1]
    l1weights = [0.1]

    #phenotype_train["Phenotype"] = phenotype_train["Phenotype"].replace({1: 0, 2: 1}) 
    #phenotype_test["Phenotype"] = phenotype_test["Phenotype"].replace({1: 0, 2: 1})
      
    for tempalpha in tempalphas:
        for l1weight in l1weights:

            
            try:
                #null_model =  sm.OLS(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
                null_model =  sm.OLS(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit()
                #null_model =  sm.OLS(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit()
            except:
                print("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
                continue

            train_null_predicted = null_model.predict(sm.add_constant(covandpcs_train.iloc[:, 2:]))
            
            from sklearn.metrics import roc_auc_score, confusion_matrix
            from sklearn.metrics import r2_score
            
            test_null_predicted = null_model.predict(sm.add_constant(covandpcs_test.iloc[:, 2:]))
            
            
            
            global prs_result 
            for i in threshold_values:
                try:
                    prs_train = pd.read_table(
                        traindirec + os.sep + Name + os.sep + "train_data.pv_{}.profile".format(i),
                        sep="\s+",
                        usecols=["FID", "IID", "SCORE"]
                    )
                except:
                    continue

                prs_train['FID'] = prs_train['FID'].astype(str)
                prs_train['IID'] = prs_train['IID'].astype(str)
                try:
                    prs_test = pd.read_table(
                        traindirec + os.sep + Name + os.sep + "test_data.pv_{}.profile".format(i),
                        sep="\s+",
                        usecols=["FID", "IID", "SCORE"]
                    )
                
                except:
                    continue
                prs_test['FID'] = prs_test['FID'].astype(str)
                prs_test['IID'] = prs_test['IID'].astype(str)
                pheno_prs_train = pd.merge(covandpcs_train, prs_train, on=["FID", "IID"])
                pheno_prs_test = pd.merge(covandpcs_test, prs_test, on=["FID", "IID"])
        
                try:
                    #model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
                    model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit()
                
                except:
                    continue


                
                train_best_predicted = model.predict(sm.add_constant(pheno_prs_train.iloc[:, 2:]))    
                test_best_predicted = model.predict(sm.add_constant(pheno_prs_test.iloc[:, 2:])) 
 
        
                from sklearn.metrics import roc_auc_score, confusion_matrix

                prs_result = prs_result.append({
                    "clump_p1": c1_val,
                    "clump_r2": c2_val,
                    "clump_kb": c3_val,
                    "p_window_size": p1_val,
                    "p_slide_size": p2_val,
                    "p_LD_threshold": p3_val,
                    "pvalue": i,
                    "numberofpca":p, 

                   
                    "numberofvariants": len(pd.read_csv(traindirec+os.sep+newtrainfilename+".clumped.pruned.bim")),
                  
                    "h2model":hapmapmodel,
                    "h2":h2,
                    "LDpred-funct-bins":ldpredbin,               

                    "Train_pure_prs":explained_variance_score(phenotype_train["Phenotype"],prs_train['SCORE'].values),
                    "Train_null_model":explained_variance_score(phenotype_train["Phenotype"],train_null_predicted),
                    "Train_best_model":explained_variance_score(phenotype_train["Phenotype"],train_best_predicted),
                    
                    "Test_pure_prs":explained_variance_score(phenotype_test["Phenotype"],prs_test['SCORE'].values),
                    "Test_null_model":explained_variance_score(phenotype_test["Phenotype"],test_null_predicted),
                    "Test_best_model":explained_variance_score(phenotype_test["Phenotype"],test_best_predicted),
                    
                }, ignore_index=True)

          
                prs_result.to_csv(traindirec+os.sep+Name+os.sep+"Results.csv",index=False)
     
    return

Execute LDpred-funct#

def transform_ldpred_funct_data(traindirec, newtrainfilename,hapmapmodel,ldpredbin,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
    ### First perform clumping on the file and save the clumpled file.
    #perform_clumping_and_pruning_on_individual_data(traindirec, newtrainfilename,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile)
    
 
    # Also extract the PCA at this point for both test and training data.
    #calculate_pca_for_traindata_testdata_for_clumped_pruned_snps(traindirec, newtrainfilename,p)

    #Extract p-values from the GWAS file.
    #os.system("awk "+"\'"+"{print $3,$8}"+"\'"+" ./"+filedirec+os.sep+filedirec+".txt >  ./"+traindirec+os.sep+"SNP.pvalue")

    
    
    
    # At this stage, we will merge the PCA and COV file. 
    tempphenotype_train = pd.read_table(traindirec+os.sep+newtrainfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype = pd.DataFrame()
    phenotype = tempphenotype_train[[0,1,5]]
    phenotype.to_csv(traindirec+os.sep+trainfilename+".PHENO",sep="\t",header=['FID', 'IID', 'PHENO'],index=False)
 
    pcs_train = pd.read_table(
        os.path.join(traindirec, trainfilename + ".eigenvec"),
        sep="\s+",
        header=None,
        names=["FID", "IID"] + ["PC" + str(i) for i in range(1, int(p) + 1)]
    )
    covariate_train = pd.read_table(traindirec+os.sep+trainfilename+".cov",sep="\s+")
    covariate_train.fillna(0, inplace=True)
    covariate_train.to_csv(traindirec+os.sep+trainfilename+".cov",sep="\t",index=False)
    covariate_train = pd.read_table(traindirec+os.sep+trainfilename+".cov",sep="\s+")
    
    covariate_train = covariate_train[covariate_train["FID"].isin(pcs_train["FID"].values) & covariate_train["IID"].isin(pcs_train["IID"].values)]
    covariate_train['FID'] = covariate_train['FID'].astype(str)
    pcs_train['FID'] = pcs_train['FID'].astype(str)
    covariate_train['IID'] = covariate_train['IID'].astype(str)
    pcs_train['IID'] = pcs_train['IID'].astype(str)
    covandpcs_train = pd.merge(covariate_train, pcs_train, on=["FID","IID"])
    covandpcs_train.to_csv(traindirec+os.sep+trainfilename+".COV_PCA",sep="\t",index=False)
     

    # Define the paths to the files to be removed.
    files_to_remove = [
        traindirec+os.sep+"LDPRED_baseline.results",
        traindirec+os.sep+"LDPRED_baseline.log",
        traindirec+os.sep+"ldpredfunct_posterior_means",
        traindirec+os.sep+"ldpredfunct_posterior_means_LDpred-inf-ldscore.txt",
        traindirec+os.sep+"functfile.txt",
        traindirec+os.sep+"ldpredfunct_gwas.txt",
        traindirec+os.sep+"functfile.txt",
         
    ]
    
    
    # Loop through the files and remove them if they exist
    for file_path in files_to_remove:
        if os.path.exists(file_path):
            os.remove(file_path)
            print("Removed: {}".format(file_path))
        else:
            print("File does not exist: {}".format(file_path))
    

    if os.path.exists(traindirec+os.sep+"Coord_Final"):
        # Delete the file
        os.remove(traindirec+os.sep+"Coord_Final")     
        
    
    
    ldpath = "LDSCFILES/"
    if hapmapmodel =="full":
        command = [
            "python",
            "ldsc/munge_sumstats.py",
            "--sumstats", filedirec+os.sep+"LDpred_funct_LDSC.txt",
            #"--merge-alleles", ldpath+os.sep+"w_hm3.snplist",
            "--out", filedirec+os.sep+"LDPRED",
            "--a1-inc"
        ]


        subprocess.call(command)
    if hapmapmodel =="hapmap":
        command = [
            "python",
            "ldsc/munge_sumstats.py",
            "--sumstats", filedirec+os.sep+"LDpred_funct_LDSC.txt",
            "--merge-alleles", ldpath+os.sep+"w_hm3.snplist.bz2",
            "--out", filedirec+os.sep+"LDPRED",
            "--a1-inc"
        ]
 
        subprocess.call(command)
    
    print(" ".join(command))
    
    
    command = [
    "python", "ldsc/ldsc.py",
    "--h2", filedirec+os.sep+"LDPRED"+".sumstats.gz",
    "--ref-ld-chr", ldpath+os.sep+"baseline/baselineLD.@",
    #"--ref-ld-chr", ldpath+os.sep+"celltype/cell_type_group.1.@",

        
    "--w-ld-chr", ldpath+os.sep+"weights/weights.@",

    "--overlap-annot",
    "--print-coefficients",

    "--frqfile-chr", ldpath+os.sep+"freq/1000G.EUR.QC.",
    "--out", traindirec+os.sep+"LDPRED_baseline",
    ]

    # Run the command
    print(" ".join(command))
    subprocess.call(command)
    #raise
    h2 = ""
    def makefunctfile():

        import re
        with open(traindirec+os.sep+"LDPRED_baseline.log", 'r') as file:
            lines = file.readlines()

        matching_lines = [line.strip() for line in lines if re.search(r'Total Observed scale h2:', line)]

        

        for line in matching_lines:
            h2 = float(line.split(":")[1].split(" ")[1])
            print(line.split(":")[1].split(" ")[1])

        result = pd.read_csv(traindirec+os.sep+"LDPRED_baseline.results",sep="\t")
 
        result["Coefficient"] = result["Coefficient"]/h2
        h2frame  =  result[["Coefficient"]]

        print(h2frame.head())
        #print(len(result))
        import gzip
        result_list = []
        snp_list = []
        for loop in range(1,23):
            with gzip.open(ldpath+os.sep+"baseline/baselineLD."+str(loop)+".annot.gz", 'rt') as file:
                tempdf = pd.read_csv(file, sep='\t', comment='#')
            ##with gzip.open(ldpath+os.sep+"celltype/cell_type_group.1."+str(loop)+".annot.gz", 'rt') as file:
            #    tempdf = pd.read_csv(file, sep='\t', comment='#')

            # Print headers
            #print("Original Headers:")
            #print(tempdf.columns)

            # Remove the first four columns
            snp_list.extend(tempdf["SNP"].values)
            tempdf = tempdf.iloc[:, 4:]
            #print(len(tempdf.columns))
            result = np.dot(tempdf.values,h2frame.values).flatten()
            result_list.extend(result)
            print(result)

        #final_result = np.concatenate(result_list, axis=1)
        # Create a DataFrame from the final result
        result_df = pd.DataFrame()

        result_df["V2"] = snp_list
        result_df["h2snp"] = result_list
        #result_df = pd.DataFrame(result_list, columns=['Dot_Product_Result'])
        result_df.to_csv(traindirec+os.sep+"functfile.txt",sep="\t",index=False)
        #print(result_df)
    
    # The calculation for the funct file required by LDpred-funct is specified on their GitHub account.
    makefunctfile()
    
    plinkfile =  traindirec+os.sep+newtrainfilename+".clumped.pruned.[1:22]"
 
    functfile = traindirec+os.sep+"functfile.txt"
    outCoord = traindirec+os.sep+"Coord_Final"
    statsfile = filedirec+os.sep+"_LDpred_funct.txt"
    
    N = len(pd.read_csv(traindirec+os.sep+newtrainfilename+".clumped.pruned"+".fam",sep="\t"))
    
    outLdpredfunct =traindirec+os.sep+"ldpredfunct_posterior_means"

        
        
    import re
    with open(traindirec+os.sep+"LDPRED_baseline.log", 'r') as file:
        lines = file.readlines()
    matching_lines = [line.strip() for line in lines if re.search(r'Total Observed scale h2:', line)]
    for line in matching_lines:
        h2 = float(line.split(":")[1].split(" ")[1])
    h2 = h2
    
    outValidate = traindirec+os.sep+"ldpredfunct_prs"
    
    tempphenotype_train = pd.read_table(traindirec+os.sep+newtrainfilename+".clumped.pruned"+".fam", sep="\s+",header=None)
    phenotype = pd.DataFrame()
    phenotype = tempphenotype_train[[0,5]]
    phenotype.to_csv(traindirec+os.sep+trainfilename+".ldpred_funct_pheno",sep="\t",index=False,header=None)
    phenotype = traindirec+os.sep+trainfilename+".ldpred_funct_pheno"
    # Construct the command
    
    for chromosome in range(1,23):
        plink_command = [
            "./plink",
            "--bfile", traindirec+os.sep+newtrainfilename+".clumped.pruned",
            "--chr", str(chromosome),
            "--make-bed",
            "--out", traindirec+os.sep+newtrainfilename+".clumped.pruned."+str(chromosome)
        ]
        subprocess.call(plink_command)
    
    command = [
        "python",
        "LDpred-funct/ldpredfunct.py",
        "--gf=" + plinkfile,
        "--pf=" + phenotype,
        "--FUNCT_FILE=" + functfile,
        "--coord=" + outCoord,
        "--ssf=" + statsfile,
        "--N=" + str(N),
        "--posterior_means=" + outLdpredfunct,
        "--H2=" + str(h2),
        "--out=" + outValidate,
        "--K="+str(ldpredbin),
        
    ]
    
    try:
        subprocess.call(command)  

        print(" ".join(command))
    except:
        print("LDpred-funct did not work! kindly see the logs generated. May be the isssue is the limited number of variants.")
        pass
    
    #exit(0)
    #raise

  
    temp = pd.read_csv(traindirec+os.sep+"ldpredfunct_posterior_means_LDpred-inf-ldscore.txt",sep="\s+" )
    
    if check_phenotype_is_binary_or_continous(filedirec)=="Binary":
        temp["ldpred_inf_beta"] = np.exp(temp["ldpred_inf_beta"])
    else:
        pass
    
    temp = temp.rename(columns={"sid": "SNP", "nt1": "A1", "ldpred_inf_beta": "BETA"})
    temp[["SNP","A1","BETA"]].to_csv(traindirec+os.sep+"ldpredfunct_gwas.txt",sep="\t",index=False)
    
    
    command = [
        "./plink",
         "--bfile", traindirec+os.sep+newtrainfilename,
        ### SNP column = 3, Effect allele column 1 = 4, OR column=7
         "--score", traindirec+os.sep+"ldpredfunct_gwas.txt", "1", "2", "3", "header",
        "--q-score-range", traindirec+os.sep+"range_list",traindirec+os.sep+"SNP.pvalue",
        #"--extract", traindirec+os.sep+trainfilename+".valid.snp",
        "--out", traindirec+os.sep+Name+os.sep+trainfilename
    ]
    #exit(0)
    subprocess.call(command)
    #raise
    # Calculate the PRS for the test data using the same set of SNPs and also calculate the PCA.


 

    command = [
        "./plink",
        "--bfile", folddirec+os.sep+testfilename,
        ### SNP column = 3, Effect allele column 1 = 4, OR column=7
         "--score", traindirec+os.sep+"ldpredfunct_gwas.txt", "1", "2", "3", "header",
        "--q-score-range", traindirec+os.sep+"range_list",traindirec+os.sep+"SNP.pvalue",
        #"--extract", traindirec+os.sep+trainfilename+".valid.snp",
        "--out", folddirec+os.sep+Name+os.sep+testfilename
    ]
    subprocess.call(command)
    
    if check_phenotype_is_binary_or_continous(filedirec)=="Binary":
        print("Binary Phenotype!")
        fit_binary_phenotype_on_PRS(traindirec, newtrainfilename,hapmapmodel,ldpredbin ,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile,h2)
    else:
        print("Continous Phenotype!")
        fit_continous_phenotype_on_PRS(traindirec, newtrainfilename,hapmapmodel,ldpredbin ,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile,h2)
     
 

hapmapmodels = ["hapmap","full"]
hapmapmodels = ["full"]
  
ldpredbins = ["2","10"]
ldpredbins = ["2"]

result_directory = "LDpred-funct"
# Nested loops to iterate over different parameter values
create_directory(folddirec+os.sep+"LDpred-funct")
for p1_val in p_window_size:
 for p2_val in p_slide_size: 
  for p3_val in p_LD_threshold:
   for c1_val in clump_p1:
    for c2_val in clump_r2:
     for c3_val in clump_kb:
      for p in numberofpca:
       for hapmapmodel in  hapmapmodels:
         for ldpredbin in ldpredbins:
             #ldscmodel = "X"
             transform_ldpred_funct_data(folddirec, newtrainfilename,hapmapmodel,ldpredbin ,p, str(p1_val), str(p2_val), str(p3_val), str(c1_val), str(c2_val), str(c3_val), "LDpred-funct", pvaluefile)
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:16: FutureWarning: read_table is deprecated, use read_csv instead.
  app.launch_new_instance()
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:25: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:27: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:30: FutureWarning: read_table is deprecated, use read_csv instead.
Removed: SampleData1/Fold_0/LDPRED_baseline.results
Removed: SampleData1/Fold_0/LDPRED_baseline.log
File does not exist: SampleData1/Fold_0/ldpredfunct_posterior_means
Removed: SampleData1/Fold_0/ldpredfunct_posterior_means_LDpred-inf-ldscore.txt
Removed: SampleData1/Fold_0/functfile.txt
Removed: SampleData1/Fold_0/ldpredfunct_gwas.txt
File does not exist: SampleData1/Fold_0/functfile.txt
python ldsc/munge_sumstats.py --sumstats SampleData1/LDpred_funct_LDSC.txt --out SampleData1/LDPRED --a1-inc
python ldsc/ldsc.py --h2 SampleData1/LDPRED.sumstats.gz --ref-ld-chr LDSCFILES//baseline/baselineLD.@ --w-ld-chr LDSCFILES//weights/weights.@ --overlap-annot --print-coefficients --frqfile-chr LDSCFILES//freq/1000G.EUR.QC. --out SampleData1/Fold_0/LDPRED_baseline
0.6332
    Coefficient
0  4.709126e-08
1  1.044727e-07
2  1.262486e-08
3 -3.604682e-08
4  2.760955e-08
[-2.10761886e-07 -2.10758415e-07  1.02259746e-07 ...  6.07420819e-08
 -1.94921600e-07  2.69159041e-07]
[ 1.15568116e-07  2.44089650e-07  1.39739329e-07 ...  6.96371216e-08
 -2.11952456e-07 -4.04429933e-07]
[ 6.89768759e-08  1.07186730e-07  3.21524271e-07 ...  3.53575274e-07
 -3.25233011e-08  1.29297052e-07]
[ 2.71325795e-07  1.40518687e-07 -3.03163985e-08 ...  1.20070971e-08
 -1.89865404e-07 -5.33779357e-08]
[ 2.00482258e-07  2.39700575e-08  2.39786526e-08 ... -4.68520689e-08
 -8.93657984e-08 -2.65981772e-07]
[ 1.99410502e-07  1.99637973e-07 -7.14928762e-08 ... -3.24849857e-08
 -1.73179095e-07 -1.73190494e-07]
[3.19445903e-08 1.38136875e-07 1.56328690e-08 ... 5.94348819e-07
 6.84326633e-07 2.17017534e-07]
[ 3.04248004e-07  2.51932123e-07  2.57428180e-07 ... -9.26107073e-08
  8.32429429e-09  1.46922795e-07]
[-1.81127615e-07 -1.81126794e-07  1.41420020e-07 ... -2.90032420e-08
  9.78240003e-07  2.45797638e-07]
[-4.09061268e-08 -3.27997646e-08 -3.27981979e-08 ...  2.85124777e-10
  3.28018040e-07  7.94158512e-08]
[ 2.06584865e-08 -3.65449335e-07 -3.25014980e-08 ...  4.94668350e-07
  2.04988708e-07  6.28657853e-08]
[-1.75116448e-07 -4.62829500e-08  6.81949847e-08 ...  6.34503321e-08
  6.34448170e-08  6.34434321e-08]
[ 1.97688547e-08  1.65883710e-07  1.62691283e-07 ... -5.90888250e-08
  4.72690485e-07  1.70102352e-07]
[ 3.51638905e-09  1.74557699e-07  1.74589617e-07 ...  3.55143500e-07
 -8.33843440e-08  3.13413727e-07]
[ 2.28657853e-07  2.28686060e-07  3.91325854e-07 ... -2.15282129e-08
 -3.75470703e-07 -8.42692614e-09]
[-1.69261791e-07 -1.72397920e-07 -5.09106208e-07 ... -1.49170508e-07
  1.93003126e-07 -1.55136797e-07]
[ 2.46001068e-07  2.36944305e-07  2.86892933e-07 ... -5.69183236e-08
 -1.38467659e-07 -2.30404381e-07]
[ 1.26305159e-07 -5.73051614e-07 -5.41194747e-07 ... -5.03809810e-08
  1.64736119e-07 -1.22203410e-07]
[-7.03266722e-08 -1.30371044e-07 -1.18913162e-07 ... -2.42348024e-07
  4.16125231e-07  7.00194146e-07]
[ 3.60512169e-07  4.07831787e-08  5.03794240e-07 ... -2.21502237e-07
  1.58710087e-07 -9.80753002e-08]
[-8.29189152e-08 -1.10700521e-08  1.26948027e-07 ... -6.99187696e-08
  2.09043208e-07  1.86898306e-07]
[ 9.34712086e-08  1.85966281e-07  7.37557830e-08 ... -1.79490453e-07
 -2.84459944e-08 -2.51229265e-08]
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:195: FutureWarning: read_table is deprecated, use read_csv instead.
python LDpred-funct/ldpredfunct.py --gf=SampleData1/Fold_0/train_data.QC.clumped.pruned.[1:22] --pf=SampleData1/Fold_0/train_data.ldpred_funct_pheno --FUNCT_FILE=SampleData1/Fold_0/functfile.txt --coord=SampleData1/Fold_0/Coord_Final --ssf=SampleData1/_LDpred_funct.txt --N=379 --posterior_means=SampleData1/Fold_0/ldpredfunct_posterior_means --H2=0.6332 --out=SampleData1/Fold_0/ldpredfunct_prs --K=2
Continous Phenotype!
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:257: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:260: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:261: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:279: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:282: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:283: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:334: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:345: FutureWarning: read_table is deprecated, use read_csv instead.

Repeat the process for each fold.#

Change the foldnumber variable.

#foldnumber = sys.argv[1]
foldnumber = "0"  # Setting 'foldnumber' to "0"

Or uncomment the following line:

# foldnumber = sys.argv[1]
python LDpred-funct-code.py 0
python LDpred-funct-code.py 1
python LDpred-funct-code.py 2
python LDpred-funct-code.py 3
python LDpred-funct-code.py 4

The following files should exist after the execution:

  1. SampleData1/Fold_0/LDpred-funct/Results.csv

  2. SampleData1/Fold_1/LDpred-funct/Results.csv

  3. SampleData1/Fold_2/LDpred-funct/Results.csv

  4. SampleData1/Fold_3/LDpred-funct/Results.csv

  5. SampleData1/Fold_4/LDpred-funct/Results.csv

Check the results file for each fold.#

import os
import pandas as pd

filedirec = "SampleData1"
result_directory = "LDpred-funct" 
# List of file names to check for existence
f = [
    "./"+filedirec+"/Fold_0"+os.sep+result_directory+"Results.csv",
    "./"+filedirec+"/Fold_1"+os.sep+result_directory+"Results.csv",
    "./"+filedirec+"/Fold_2"+os.sep+result_directory+"Results.csv",
    "./"+filedirec+"/Fold_3"+os.sep+result_directory+"Results.csv",
    "./"+filedirec+"/Fold_4"+os.sep+result_directory+"Results.csv",
]

 

# Loop through each file name in the list
for loop in range(0,5):
    # Check if the file exists in the specified directory for the given fold
    if os.path.exists(filedirec+os.sep+"Fold_"+str(loop)+os.sep+result_directory+os.sep+"Results.csv"):
        temp = pd.read_csv(filedirec+os.sep+"Fold_"+str(loop)+os.sep+result_directory+os.sep+"Results.csv")
        print("Fold_",loop, "Yes, the file exists.")
        #print(temp.head())
        print("Number of P-values processed: ",len(temp))
        # Print a message indicating that the file exists
    
    else:
        # Print a message indicating that the file does not exist
        print("Fold_",loop, "No, the file does not exist.")
('Fold_', 0, 'Yes, the file exists.')
('Number of P-values processed: ', 20)
('Fold_', 1, 'Yes, the file exists.')
('Number of P-values processed: ', 20)
('Fold_', 2, 'Yes, the file exists.')
('Number of P-values processed: ', 20)
('Fold_', 3, 'Yes, the file exists.')
('Number of P-values processed: ', 20)
('Fold_', 4, 'Yes, the file exists.')
('Number of P-values processed: ', 20)

Sum the results for each fold.#

print("We have to ensure when we sum the entries across all Folds, the same rows are merged!")

def sum_and_average_columns(data_frames):
    """Sum and average numerical columns across multiple DataFrames, and keep non-numerical columns unchanged."""
    # Initialize DataFrame to store the summed results for numerical columns
    summed_df = pd.DataFrame()
    non_numerical_df = pd.DataFrame()
    
    for df in data_frames:
        # Identify numerical and non-numerical columns
        numerical_cols = df.select_dtypes(include=[np.number]).columns
        non_numerical_cols = df.select_dtypes(exclude=[np.number]).columns
        
        # Sum numerical columns
        if summed_df.empty:
            summed_df = pd.DataFrame(0, index=range(len(df)), columns=numerical_cols)
        
        summed_df[numerical_cols] = summed_df[numerical_cols].add(df[numerical_cols], fill_value=0)
        
        # Keep non-numerical columns (take the first non-numerical entry for each column)
        if non_numerical_df.empty:
            non_numerical_df = df[non_numerical_cols]
        else:
            non_numerical_df[non_numerical_cols] = non_numerical_df[non_numerical_cols].combine_first(df[non_numerical_cols])
    
    # Divide the summed values by the number of dataframes to get the average
    averaged_df = summed_df / len(data_frames)
    
    # Combine numerical and non-numerical DataFrames
    result_df = pd.concat([averaged_df, non_numerical_df], axis=1)
    
    return result_df

from functools import reduce
import numpy as np
import os
import pandas as pd
from functools import reduce
def dataframe_to_markdown(df):
    # Create the header
    header = "| " + " | ".join(df.columns) + " |"
    separator = "| " + " | ".join(['---'] * len(df.columns)) + " |"
    
    # Create the rows
    rows = []
    for index, row in df.iterrows():
        row_string = "| " + " | ".join([str(item) for item in row]) + " |"
        rows.append(row_string)
    
    # Combine all parts into the final markdown string
    markdown = header + "\n" + separator + "\n" + "\n".join(rows)
    return markdown

def find_common_rows(allfoldsframe):
    # Define the performance columns that need to be excluded
    performance_columns = [
        'Train_null_model', 'Train_pure_prs', 'Train_best_model',
        'Test_pure_prs', 'Test_null_model', 'Test_best_model'
    ]
    
    important_columns = [
        'clump_p1',
        'clump_r2',
        'clump_kb',
        'p_window_size',
        'p_slide_size',
        'p_LD_threshold',
        'pvalue',
        'referencepanel',
        'PRSice-2_Model',
        'effectsizes',
        'h2model',
        #'lambda',
        #'delta',
        'model',
        'numberofpca',
        'tempalpha',
        'l1weight',
        'LDpred-funct-bins',
        "heritability_model",
        "unique_h2",
        "grid_pvalue",
        "burn_in", 
        "num_iter",
        "sparse",
        "temp_pvalue",              
        "allow_jump_sign" ,
        "shrink_corr" ,
        "use_MLE" ,
        #"sparsity",
        "lasso_parameters_count",
              
    ]
    # Function to remove performance columns from a DataFrame
    def drop_performance_columns(df):
        return df.drop(columns=performance_columns, errors='ignore')
    
    def get_important_columns(df ):
        existing_columns = [col for col in important_columns if col in df.columns]
        if existing_columns:
            return df[existing_columns].copy()
        else:
            return pd.DataFrame()

    # Drop performance columns from all DataFrames in the list
    allfoldsframe_dropped = [drop_performance_columns(df) for df in allfoldsframe]
    
    # Get the important columns.
    allfoldsframe_dropped = [get_important_columns(df) for df in allfoldsframe_dropped]    
    
    common_rows = allfoldsframe_dropped[0]
    print(dataframe_to_markdown(common_rows.head()))
    
    
    
    for i in range(1, len(allfoldsframe_dropped)):
        # Get the next DataFrame
        next_df = allfoldsframe_dropped[i]

        # Count unique rows in the current DataFrame and the next DataFrame
        unique_in_common = common_rows.shape[0]
        unique_in_next = next_df.shape[0]

        # Find common rows between the current common_rows and the next DataFrame
        common_rows = pd.merge(common_rows, next_df, how='inner')
    
        # Count the common rows after merging
        common_count = common_rows.shape[0]
        print(dataframe_to_markdown(common_rows.head()))
    
        # Print the unique and common row counts
        print("Iteration {}:".format(i))
        print("Unique rows in current common DataFrame: {}".format(unique_in_common))
        print("Unique rows in next DataFrame: {}".format(unique_in_next))
        print("Common rows after merge: {}\n".format(common_count))
    
    # Now that we have the common rows, extract these from the original DataFrames
    extracted_common_rows_frames = []
    for original_df in allfoldsframe:
        # Merge the common rows with the original DataFrame, keeping only the rows that match the common rows
        extracted_common_rows = pd.merge(common_rows, original_df, how='inner', on=common_rows.columns.tolist())
        
        # Add the DataFrame with the extracted common rows to the list
        extracted_common_rows_frames.append(extracted_common_rows)

    # Print the number of rows in the common DataFrames
    for i, df in enumerate(extracted_common_rows_frames):
        print("DataFrame {} with extracted common rows has {} rows.".format(i + 1, df.shape[0]))

    # Return the list of DataFrames with extracted common rows
    return extracted_common_rows_frames


# Example usage (assuming allfoldsframe is populated as shown earlier):
allfoldsframe = []

# Loop through each file name in the list
for loop in range(0, 5):
    # Check if the file exists in the specified directory for the given fold
    file_path = os.path.join(filedirec, "Fold_" + str(loop), result_directory, "Results.csv")
    if os.path.exists(file_path):
        allfoldsframe.append(pd.read_csv(file_path))
        # Print a message indicating that the file exists
        print("Fold_", loop, "Yes, the file exists.")
    else:
        # Print a message indicating that the file does not exist
        print("Fold_", loop, "No, the file does not exist.")

# Find the common rows across all folds and return the list of extracted common rows
extracted_common_rows_list = find_common_rows(allfoldsframe)
 
# Sum the values column-wise
# For string values, do not sum it the values are going to be the same for each fold.
# Only sum the numeric values.

divided_result = sum_and_average_columns(extracted_common_rows_list)
  
print(divided_result)

 
We have to ensure when we sum the entries across all Folds, the same rows are merged!
('Fold_', 0, 'Yes, the file exists.')
('Fold_', 1, 'Yes, the file exists.')
('Fold_', 2, 'Yes, the file exists.')
('Fold_', 3, 'Yes, the file exists.')
('Fold_', 4, 'Yes, the file exists.')
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | h2model | model | numberofpca | LDpred-funct-bins |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | full | nan | 6 | 2 |
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | h2model | model | numberofpca | LDpred-funct-bins |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | full | nan | 6 | 2 |
Iteration 1:
Unique rows in current common DataFrame: 20
Unique rows in next DataFrame: 20
Common rows after merge: 20

| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | h2model | model | numberofpca | LDpred-funct-bins |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | full | nan | 6 | 2 |
Iteration 2:
Unique rows in current common DataFrame: 20
Unique rows in next DataFrame: 20
Common rows after merge: 20

| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | h2model | model | numberofpca | LDpred-funct-bins |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | full | nan | 6 | 2 |
Iteration 3:
Unique rows in current common DataFrame: 20
Unique rows in next DataFrame: 20
Common rows after merge: 20

| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | h2model | model | numberofpca | LDpred-funct-bins |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | full | nan | 6 | 2 |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | full | nan | 6 | 2 |
Iteration 4:
Unique rows in current common DataFrame: 20
Unique rows in next DataFrame: 20
Common rows after merge: 20

DataFrame 1 with extracted common rows has 20 rows.
DataFrame 2 with extracted common rows has 20 rows.
DataFrame 3 with extracted common rows has 20 rows.
DataFrame 4 with extracted common rows has 20 rows.
DataFrame 5 with extracted common rows has 20 rows.
    clump_p1  clump_r2  clump_kb  p_window_size  p_slide_size  p_LD_threshold  \
0        1.0       0.1     200.0          200.0          50.0            0.25   
1        1.0       0.1     200.0          200.0          50.0            0.25   
2        1.0       0.1     200.0          200.0          50.0            0.25   
3        1.0       0.1     200.0          200.0          50.0            0.25   
4        1.0       0.1     200.0          200.0          50.0            0.25   
5        1.0       0.1     200.0          200.0          50.0            0.25   
6        1.0       0.1     200.0          200.0          50.0            0.25   
7        1.0       0.1     200.0          200.0          50.0            0.25   
8        1.0       0.1     200.0          200.0          50.0            0.25   
9        1.0       0.1     200.0          200.0          50.0            0.25   
10       1.0       0.1     200.0          200.0          50.0            0.25   
11       1.0       0.1     200.0          200.0          50.0            0.25   
12       1.0       0.1     200.0          200.0          50.0            0.25   
13       1.0       0.1     200.0          200.0          50.0            0.25   
14       1.0       0.1     200.0          200.0          50.0            0.25   
15       1.0       0.1     200.0          200.0          50.0            0.25   
16       1.0       0.1     200.0          200.0          50.0            0.25   
17       1.0       0.1     200.0          200.0          50.0            0.25   
18       1.0       0.1     200.0          200.0          50.0            0.25   
19       1.0       0.1     200.0          200.0          50.0            0.25   

          pvalue  model  numberofpca  LDpred-funct-bins  ...  \
0   1.000000e-10    0.0          6.0                2.0  ...   
1   3.359818e-10    0.0          6.0                2.0  ...   
2   1.128838e-09    0.0          6.0                2.0  ...   
3   3.792690e-09    0.0          6.0                2.0  ...   
4   1.274275e-08    0.0          6.0                2.0  ...   
5   4.281332e-08    0.0          6.0                2.0  ...   
6   1.438450e-07    0.0          6.0                2.0  ...   
7   4.832930e-07    0.0          6.0                2.0  ...   
8   1.623777e-06    0.0          6.0                2.0  ...   
9   5.455595e-06    0.0          6.0                2.0  ...   
10  1.832981e-05    0.0          6.0                2.0  ...   
11  6.158482e-05    0.0          6.0                2.0  ...   
12  2.069138e-04    0.0          6.0                2.0  ...   
13  6.951928e-04    0.0          6.0                2.0  ...   
14  2.335721e-03    0.0          6.0                2.0  ...   
15  7.847600e-03    0.0          6.0                2.0  ...   
16  2.636651e-02    0.0          6.0                2.0  ...   
17  8.858668e-02    0.0          6.0                2.0  ...   
18  2.976351e-01    0.0          6.0                2.0  ...   
19  1.000000e+00    0.0          6.0                2.0  ...   

    numberofvariants(m)  Train_pure_prs  Train_null_model  Train_best_model  \
0                   0.0    6.764905e-06           0.23001          0.234406   
1                   0.0    5.658587e-06           0.23001          0.233978   
2                   0.0    5.762025e-06           0.23001          0.235546   
3                   0.0    6.119490e-06           0.23001          0.237609   
4                   0.0    6.702985e-06           0.23001          0.242886   
5                   0.0    5.625974e-06           0.23001          0.243031   
6                   0.0    5.405208e-06           0.23001          0.245582   
7                   0.0    4.122190e-06           0.23001          0.244376   
8                   0.0    4.028646e-06           0.23001          0.248732   
9                   0.0    4.100213e-06           0.23001          0.256975   
10                  0.0    3.950130e-06           0.23001          0.267563   
11                  0.0    3.449541e-06           0.23001          0.274810   
12                  0.0    2.927592e-06           0.23001          0.279277   
13                  0.0    2.647879e-06           0.23001          0.290300   
14                  0.0    2.189178e-06           0.23001          0.301650   
15                  0.0    1.787224e-06           0.23001          0.308934   
16                  0.0    1.247514e-06           0.23001          0.313359   
17                  0.0    8.776203e-07           0.23001          0.316582   
18                  0.0    6.109545e-07           0.23001          0.328056   
19                  0.0    3.650838e-07           0.23001          0.331060   

    Test_pure_prs  ldscmodel  Test_null_model  Test_best_model  \
0    3.711239e-06        0.0         0.118692         0.117637   
1    2.903363e-06        0.0         0.118692         0.113459   
2    3.919729e-06        0.0         0.118692         0.118935   
3    4.784125e-06        0.0         0.118692         0.121026   
4    5.409369e-06        0.0         0.118692         0.128612   
5    4.641353e-06        0.0         0.118692         0.130670   
6    5.030032e-06        0.0         0.118692         0.132575   
7    4.120422e-06        0.0         0.118692         0.131295   
8    3.926443e-06        0.0         0.118692         0.132846   
9    4.035996e-06        0.0         0.118692         0.141315   
10   3.912030e-06        0.0         0.118692         0.157448   
11   3.496461e-06        0.0         0.118692         0.175260   
12   3.040849e-06        0.0         0.118692         0.174844   
13   2.771833e-06        0.0         0.118692         0.195946   
14   2.269089e-06        0.0         0.118692         0.213451   
15   1.834660e-06        0.0         0.118692         0.225897   
16   1.281239e-06        0.0         0.118692         0.234362   
17   9.074813e-07        0.0         0.118692         0.246118   
18   6.299871e-07        0.0         0.118692         0.262952   
19   3.786930e-07        0.0         0.118692         0.261404   

    numberofvariants  h2model  
0           173107.8     full  
1           173107.8     full  
2           173107.8     full  
3           173107.8     full  
4           173107.8     full  
5           173107.8     full  
6           173107.8     full  
7           173107.8     full  
8           173107.8     full  
9           173107.8     full  
10          173107.8     full  
11          173107.8     full  
12          173107.8     full  
13          173107.8     full  
14          173107.8     full  
15          173107.8     full  
16          173107.8     full  
17          173107.8     full  
18          173107.8     full  
19          173107.8     full  

[20 rows x 22 columns]

Results#

1. Reporting Based on Best Training Performance:#

  • One can report the results based on the best performance of the training data. For example, if for a specific combination of hyperparameters, the training performance is high, report the corresponding test performance.

  • Example code:

    df = divided_result.sort_values(by='Train_best_model', ascending=False)
    print(df.iloc[0].to_markdown())
    

Binary Phenotypes Result Analysis#

You can find the performance quality for binary phenotype using the following template:

PerformanceBinary

This figure shows the 8 different scenarios that can exist in the results, and the following table explains each scenario.

We classified performance based on the following table:

Performance Level

Range

Low Performance

0 to 0.5

Moderate Performance

0.6 to 0.7

High Performance

0.8 to 1

You can match the performance based on the following scenarios:

Scenario

What’s Happening

Implication

High Test, High Train

The model performs well on both training and test datasets, effectively learning the underlying patterns.

The model is well-tuned, generalizes well, and makes accurate predictions on both datasets.

High Test, Moderate Train

The model generalizes well but may not be fully optimized on training data, missing some underlying patterns.

The model is fairly robust but may benefit from further tuning or more training to improve its learning.

High Test, Low Train

An unusual scenario, potentially indicating data leakage or overestimation of test performance.

The model’s performance is likely unreliable; investigate potential data issues or random noise.

Moderate Test, High Train

The model fits the training data well but doesn’t generalize as effectively, capturing only some test patterns.

The model is slightly overfitting; adjustments may be needed to improve generalization on unseen data.

Moderate Test, Moderate Train

The model shows balanced but moderate performance on both datasets, capturing some patterns but missing others.

The model is moderately fitting; further improvements could be made in both training and generalization.

Moderate Test, Low Train

The model underperforms on training data and doesn’t generalize well, leading to moderate test performance.

The model may need more complexity, additional features, or better training to improve on both datasets.

Low Test, High Train

The model overfits the training data, performing poorly on the test set.

The model doesn’t generalize well; simplifying the model or using regularization may help reduce overfitting.

Low Test, Low Train

The model performs poorly on both training and test datasets, failing to learn the data patterns effectively.

The model is underfitting; it may need more complexity, additional features, or more data to improve performance.

Recommendations for Publishing Results#

When publishing results, scenarios with moderate train and moderate test performance can be used for complex phenotypes or diseases. However, results showing high train and moderate test, high train and high test, and moderate train and high test are recommended.

For most phenotypes, results typically fall in the moderate train and moderate test performance category.

Continuous Phenotypes Result Analysis#

You can find the performance quality for continuous phenotypes using the following template:

PerformanceContinous

This figure shows the 8 different scenarios that can exist in the results, and the following table explains each scenario.

We classified performance based on the following table:

Performance Level

Range

Low Performance

0 to 0.2

Moderate Performance

0.3 to 0.7

High Performance

0.8 to 1

You can match the performance based on the following scenarios:

Scenario

What’s Happening

Implication

High Test, High Train

The model performs well on both training and test datasets, effectively learning the underlying patterns.

The model is well-tuned, generalizes well, and makes accurate predictions on both datasets.

High Test, Moderate Train

The model generalizes well but may not be fully optimized on training data, missing some underlying patterns.

The model is fairly robust but may benefit from further tuning or more training to improve its learning.

High Test, Low Train

An unusual scenario, potentially indicating data leakage or overestimation of test performance.

The model’s performance is likely unreliable; investigate potential data issues or random noise.

Moderate Test, High Train

The model fits the training data well but doesn’t generalize as effectively, capturing only some test patterns.

The model is slightly overfitting; adjustments may be needed to improve generalization on unseen data.

Moderate Test, Moderate Train

The model shows balanced but moderate performance on both datasets, capturing some patterns but missing others.

The model is moderately fitting; further improvements could be made in both training and generalization.

Moderate Test, Low Train

The model underperforms on training data and doesn’t generalize well, leading to moderate test performance.

The model may need more complexity, additional features, or better training to improve on both datasets.

Low Test, High Train

The model overfits the training data, performing poorly on the test set.

The model doesn’t generalize well; simplifying the model or using regularization may help reduce overfitting.

Low Test, Low Train

The model performs poorly on both training and test datasets, failing to learn the data patterns effectively.

The model is underfitting; it may need more complexity, additional features, or more data to improve performance.

Recommendations for Publishing Results#

When publishing results, scenarios with moderate train and moderate test performance can be used for complex phenotypes or diseases. However, results showing high train and moderate test, high train and high test, and moderate train and high test are recommended.

For most continuous phenotypes, results typically fall in the moderate train and moderate test performance category.

2. Reporting Generalized Performance:#

  • One can also report the generalized performance by calculating the difference between the training and test performance, and the sum of the test and training performance. Report the result or hyperparameter combination for which the sum is high and the difference is minimal.

  • Example code:

    df = divided_result.copy()
    df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model'])
    df['Sum'] = df['Train_best_model'] + df['Test_best_model']
    
    sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True])
    print(sorted_df.iloc[0].to_markdown())
    

3. Reporting Hyperparameters Affecting Test and Train Performance:#

  • Find the hyperparameters that have more than one unique value and calculate their correlation with the following columns to understand how they are affecting the performance of train and test sets:

    • Train_null_model

    • Train_pure_prs

    • Train_best_model

    • Test_pure_prs

    • Test_null_model

    • Test_best_model

4. Other Analysis#

  1. Once you have the results, you can find how hyperparameters affect the model performance.

  2. Analysis, like overfitting and underfitting, can be performed as well.

  3. The way you are going to report the results can vary.

  4. Results can be visualized, and other patterns in the data can be explored.

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib notebook

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
# In Python 2, use 'plt.ion()' to enable interactive mode
plt.ion()

df = divided_result.sort_values(by='Train_best_model', ascending=False)
print("1. Reporting Based on Best Training Performance:\n")
print(df.iloc[0])

df = divided_result.copy()

# Plot Train and Test best models against p-values
plt.figure(figsize=(10, 6))
plt.plot(df['pvalue'], df['Train_best_model'], label='Train_best_model', marker='o', color='royalblue')
plt.plot(df['pvalue'], df['Test_best_model'], label='Test_best_model', marker='o', color='darkorange')

# Highlight the p-value where both train and test are high
best_index = df[['Train_best_model']].sum(axis=1).idxmax()
best_pvalue = df.loc[best_index, 'pvalue']
best_train = df.loc[best_index, 'Train_best_model']
best_test = df.loc[best_index, 'Test_best_model']

# Use dark colors for the circles
plt.scatter(best_pvalue, best_train, color='darkred', s=100, label='Best Performance (Train)', edgecolor='black', zorder=5)
plt.scatter(best_pvalue, best_test, color='darkblue', s=100, label='Best Performance (Test)', edgecolor='black', zorder=5)

# Annotate the best performance with p-value, train, and test values
plt.text(best_pvalue, best_train, 'p=%0.4g\nTrain=%0.4g' % (best_pvalue, best_train), ha='right', va='bottom', fontsize=9, color='darkred')
plt.text(best_pvalue, best_test, 'p=%0.4g\nTest=%0.4g' % (best_pvalue, best_test), ha='right', va='top', fontsize=9, color='darkblue')

# Calculate Difference and Sum
df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model'])
df['Sum'] = df['Train_best_model'] + df['Test_best_model']

# Sort the DataFrame
sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True])

# Highlight the general performance
general_index = sorted_df.index[0]
general_pvalue = sorted_df.loc[general_index, 'pvalue']
general_train = sorted_df.loc[general_index, 'Train_best_model']
general_test = sorted_df.loc[general_index, 'Test_best_model']

plt.scatter(general_pvalue, general_train, color='darkgreen', s=150, label='General Performance (Train)', edgecolor='black', zorder=6)
plt.scatter(general_pvalue, general_test, color='darkorange', s=150, label='General Performance (Test)', edgecolor='black', zorder=6)

# Annotate the general performance with p-value, train, and test values
plt.text(general_pvalue, general_train, 'p=%0.4g\nTrain=%0.4g' % (general_pvalue, general_train), ha='right', va='bottom', fontsize=9, color='darkgreen')
plt.text(general_pvalue, general_test, 'p=%0.4g\nTest=%0.4g' % (general_pvalue, general_test), ha='right', va='top', fontsize=9, color='darkorange')

# Add labels and legend
plt.xlabel('p-value')
plt.ylabel('Model Performance')
plt.title('Train vs Test Best Models')
plt.legend()
plt.show()

print("2. Reporting Generalized Performance:\n")
df = divided_result.copy()
df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model'])
df['Sum'] = df['Train_best_model'] + df['Test_best_model']
sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True])
print(sorted_df.iloc[0])

print("3. Reporting the correlation of hyperparameters and the performance of 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model':\n")

print("3. For string hyperparameters, we used one-hot encoding to find the correlation between string hyperparameters and 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model'.")

print("3. We performed this analysis for those hyperparameters that have more than one unique value.")

correlation_columns = [
    'Train_null_model', 'Train_pure_prs', 'Train_best_model',
    'Test_pure_prs', 'Test_null_model', 'Test_best_model'
]

hyperparams = [col for col in divided_result.columns if len(divided_result[col].unique()) > 1]
hyperparams = list(set(hyperparams + correlation_columns))

# Separate numeric and string columns
numeric_hyperparams = [col for col in hyperparams if pd.api.types.is_numeric_dtype(divided_result[col])]
string_hyperparams = [col for col in hyperparams if pd.api.types.is_string_dtype(divided_result[col])]

# Encode string columns using one-hot encoding
divided_result_encoded = pd.get_dummies(divided_result, columns=string_hyperparams)

# Combine numeric hyperparams with the new one-hot encoded columns
encoded_columns = [col for col in divided_result_encoded.columns if col.startswith(tuple(string_hyperparams))]
hyperparams = numeric_hyperparams + encoded_columns

# Calculate correlations
correlations = divided_result_encoded[hyperparams].corr()

# Display correlation of hyperparameters with train/test performance columns
hyperparam_correlations = correlations.loc[hyperparams, correlation_columns]
hyperparam_correlations = hyperparam_correlations.fillna(0)

# Plotting the correlation heatmap
plt.figure(figsize=(12, 8))
ax = sns.heatmap(hyperparam_correlations, annot=True, cmap='viridis', fmt='.2f', cbar=True)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90, ha='right')

# Rotate y-axis labels to horizontal
#ax.set_yticklabels(ax.get_yticklabels(), rotation=0, va='center')

plt.title('Correlation of Hyperparameters with Train/Test Performance')
plt.show()

sns.set_style("whitegrid")  # Choose your preferred style
pairplot = sns.pairplot(divided_result_encoded[hyperparams], hue='Test_best_model', palette='viridis')

# Adjust the figure size
pairplot.fig.set_size_inches(15, 15)  # You can adjust the size as needed

for ax in pairplot.axes.flatten():
    ax.set_xlabel(ax.get_xlabel(), rotation=90, ha='right')  # X-axis labels vertical
    #ax.set_ylabel(ax.get_ylabel(), rotation=0, va='bottom')  # Y-axis labels horizontal

# Show the plot
plt.show()
1. Reporting Based on Best Training Performance:

clump_p1                         1
clump_r2                       0.1
clump_kb                       200
p_window_size                  200
p_slide_size                    50
p_LD_threshold                0.25
pvalue                           1
model                            0
numberofpca                      6
LDpred-funct-bins                2
h2                          0.6332
lambda                           0
numberofvariants(m)              0
Train_pure_prs         3.65084e-07
Train_null_model           0.23001
Train_best_model           0.33106
Test_pure_prs          3.78693e-07
ldscmodel                        0
Test_null_model           0.118692
Test_best_model           0.261404
numberofvariants            173108
h2model                       full
Name: 19, dtype: object
2. Reporting Generalized Performance:

clump_p1                         1
clump_r2                       0.1
clump_kb                       200
p_window_size                  200
p_slide_size                    50
p_LD_threshold                0.25
pvalue                           1
model                            0
numberofpca                      6
LDpred-funct-bins                2
h2                          0.6332
lambda                           0
numberofvariants(m)              0
Train_pure_prs         3.65084e-07
Train_null_model           0.23001
Train_best_model           0.33106
Test_pure_prs          3.78693e-07
ldscmodel                        0
Test_null_model           0.118692
Test_best_model           0.261404
numberofvariants            173108
h2model                       full
Difference               0.0696555
Sum                       0.592464
Name: 19, dtype: object
3. Reporting the correlation of hyperparameters and the performance of 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model':

3. For string hyperparameters, we used one-hot encoding to find the correlation between string hyperparameters and 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model'.
3. We performed this analysis for those hyperparameters that have more than one unique value.