AnnoPred#
In this notebook, we will use AnnoPred to calculate the PRS.
Note: AnnoPred requires Python 2.0.
Download the Repository#
Clone the AnnoPred repository using Git:
git clone https://github.com/yiminghu/AnnoPred.git
Also copy the files in the currenct working directory.
Annotation Data#
AnnoPred requires functional annotation information for the prediction and uses two GWAS datasets for related diseases.
To download the annotation data:
OR use the following Google Drive link. There are two files:
AnnoPred_ref.tar.gz
AnnoPred_ref1.0.tar.gz
OR
cd AnnoPred
wget http://genocanyon.med.yale.edu/AnnoPredFiles/AnnoPred_ref.tar.gz
Extract the downloaded file:
tar -zxvf AnnoPred_ref1.0.tar.gz
This step will generate a folder named ref
containing functional annotations.
LDSC Installation#
AnnoPred also requires LDSC. Download it using:
cd AnnoPred
git clone https://github.com/bulik/ldsc
After cloning, you should have the following directory structure:
annopred AnnoPred_ref1.0.tar.gz ldsc pipeline.sh ref split_cv.R
AnnoPred.py doc LICENSE README.md results_cv.R test_data
Once these steps are complete, copy the all files in AnnoPred folder to the working directory.
cd AnnoPred/
cp * ../
Open LDSC.config
and paste the path to LDSC in it:
cat LDSC.config
# LDSCPath /data/ascher01/uqmmune1/BenchmarkingPGSTools/ldsc
OR
# LDSCPath workingdirectory/ldsc
AnnoPred Hyperparameters#
One can pass a custom LD radius. To speed up the process, users can provide the h2. If it is skipped, AnnoPred will calculate it by itself.
Command-Line Options#
Option |
Description |
---|---|
|
Show this help message and exit. |
|
GWAS summary stats. |
|
Reference genotype, plink bed format. |
|
Validation genotype, plink bed format. |
|
Sample size of GWAS training, for LDSC. |
|
Annotation flag: Tier0, Tier1, Tier2, and Tier3. |
|
Tuning parameter in (0,1], the proportion of causal SNPs. |
|
A local LD file name prefix; will be created if not present. |
|
If not provided, will use the number of SNPs in common divided by 3000. |
|
Path to per-SNP heritability. If not provided, will use LDSC with 53 baseline annotations, GenoCanyon, and GenoSkyline. |
|
Directory to output all temporary files. If not specified, will use the current directory. |
|
Number of iterations for MCMC, default to 60. |
|
Output H5 File for coord_genotypes. |
|
Output filename prefix for AnnoPred. |
GWAS file processing for AnnoPred#
AnnoPred will automatically convert the OR to log or or betas for the continous phenotype so we saved the file as contianing OR ratio only.
import os
import pandas as pd
import numpy as np
import sys
#filedirec = sys.argv[1]
filedirec = "SampleData1"
#filedirec = "asthma_19"
#filedirec = "migraine_0"
def check_phenotype_is_binary_or_continous(filedirec):
# Read the processed quality controlled file for a phenotype
df = pd.read_csv(filedirec+os.sep+filedirec+'_QC.fam',sep="\s+",header=None)
column_values = df[5].unique()
if len(set(column_values)) == 2:
return "Binary"
else:
return "Continous"
# Read the GWAS file.
GWAS = filedirec + os.sep + filedirec+".gz"
df = pd.read_csv(GWAS,compression= "gzip",sep="\s+")
Numberofsamples = df["N"].mean()
if "BETA" in df.columns.to_list():
# For Binary Phenotypes.
df["OR"] = np.exp(df["BETA"])
df = df[['CHR', 'BP', 'SNP', 'A1', 'A2', 'N', 'SE', 'P', 'OR', 'INFO', 'MAF']]
else:
# For Binary Phenotype.
df = df[['CHR', 'BP', 'SNP', 'A1', 'A2', 'N', 'SE', 'P', 'OR', 'INFO', 'MAF']]
column_mapping = {"CHR": "hg19chrc", "SNP": "snpid", "A1": "a1", "A2": "a2", "BP": "bp", "OR": "or", "P": "p"}
new_columns = ["hg19chrc", "snpid", "a1", "a2", "bp", "or", "p"]
transformed_df = df.rename(columns=column_mapping)[new_columns]
transformed_df['hg19chrc'] = transformed_df['hg19chrc'].apply(lambda x: "chr" + str(x))
print(transformed_df.head())
transformed_df.to_csv(filedirec + os.sep +filedirec+".AnnoPred",sep="\t",index=False)
print(transformed_df.head())
print("Length of DataFrame!",len(transformed_df))
hg19chrc snpid a1 a2 bp or p
0 chr1 rs3131962 A G 756604 0.997887 0.483171
1 chr1 rs12562034 A G 768448 1.000687 0.834808
2 chr1 rs4040617 G A 779322 0.997604 0.428970
3 chr1 rs79373928 G T 801536 1.002036 0.808999
4 chr1 rs11240779 G A 808631 1.001308 0.590265
hg19chrc snpid a1 a2 bp or p
0 chr1 rs3131962 A G 756604 0.997887 0.483171
1 chr1 rs12562034 A G 768448 1.000687 0.834808
2 chr1 rs4040617 G A 779322 0.997604 0.428970
3 chr1 rs79373928 G T 801536 1.002036 0.808999
4 chr1 rs11240779 G A 808631 1.001308 0.590265
('Length of DataFrame!', 499617)
Define Hyperparameters#
Define hyperparameters to be optimized and set initial values.
Extract Valid SNPs from Clumped File#
For Windows, download gwak
, and for Linux, the awk
command is sufficient. For Windows, GWAK
is required. You can download it from here. Get it and place it in the same directory.
Execution Path#
At this stage, we have the genotype training data newtrainfilename = "train_data.QC"
and genotype test data newtestfilename = "test_data.QC"
.
We modified the following variables:
filedirec = "SampleData1"
orfiledirec = sys.argv[1]
foldnumber = "0"
orfoldnumber = sys.argv[2]
for HPC.
Only these two variables can be modified to execute the code for specific data and specific folds. Though the code can be executed separately for each fold on HPC and separately for each dataset, it is recommended to execute it for multiple diseases and one fold at a time. Here’s the corrected text in Markdown format:
P-values#
PRS calculation relies on P-values. SNPs with low P-values, indicating a high degree of association with a specific trait, are considered for calculation.
You can modify the code below to consider a specific set of P-values and save the file in the same format.
We considered the following parameters:
Minimum P-value:
1e-10
Maximum P-value:
1.0
Minimum exponent:
10
(Minimum P-value in exponent)Number of intervals:
100
(Number of intervals to be considered)
The code generates an array of logarithmically spaced P-values:
import numpy as np
import os
minimumpvalue = 10 # Minimum exponent for P-values
numberofintervals = 100 # Number of intervals to be considered
allpvalues = np.logspace(-minimumpvalue, 0, numberofintervals, endpoint=True) # Generating an array of logarithmically spaced P-values
print("Minimum P-value:", allpvalues[0])
print("Maximum P-value:", allpvalues[-1])
count = 1
with open(os.path.join(folddirec, 'range_list'), 'w') as file:
for value in allpvalues:
file.write(f'pv_{value} 0 {value}\n') # Writing range information to the 'range_list' file
count += 1
pvaluefile = os.path.join(folddirec, 'range_list')
In this code:
minimumpvalue
defines the minimum exponent for P-values.numberofintervals
specifies how many intervals to consider.allpvalues
generates an array of P-values spaced logarithmically.The script writes these P-values to a file named
range_list
in the specified directory.
from operator import index
import pandas as pd
import numpy as np
import os
import subprocess
import sys
import pandas as pd
import statsmodels.api as sm
import pandas as pd
from sklearn.metrics import roc_auc_score, confusion_matrix
from statsmodels.stats.contingency_tables import mcnemar
def create_directory(directory):
"""Function to create a directory if it doesn't exist."""
if not os.path.exists(directory): # Checking if the directory doesn't exist
os.makedirs(directory) # Creating the directory if it doesn't exist
return directory # Returning the created or existing directory
#foldnumber = sys.argv[1]
foldnumber = "0" # Setting 'foldnumber' to "0"
folddirec = filedirec + os.sep + "Fold_" + foldnumber # Creating a directory path for the specific fold
trainfilename = "train_data" # Setting the name of the training data file
newtrainfilename = "train_data.QC" # Setting the name of the new training data file
testfilename = "test_data" # Setting the name of the test data file
newtestfilename = "test_data.QC" # Setting the name of the new test data file
# Number of PCA to be included as a covariate.
numberofpca = ["6"] # Setting the number of PCA components to be included
# Clumping parameters.
clump_p1 = [1] # List containing clump parameter 'p1'
clump_r2 = [0.1] # List containing clump parameter 'r2'
clump_kb = [200] # List containing clump parameter 'kb'
# Pruning parameters.
p_window_size = [200] # List containing pruning parameter 'window_size'
p_slide_size = [50] # List containing pruning parameter 'slide_size'
p_LD_threshold = [0.25] # List containing pruning parameter 'LD_threshold'
# Kindly note that the number of p-values to be considered varies, and the actual p-value depends on the dataset as well.
# We will specify the range list here.
#folddirec = "/path/to/your/folder" # Replace with your actual folder path
from decimal import Decimal, getcontext
import numpy as np
# Set precision to a high value (e.g., 50)
getcontext().prec = 50
minimumpvalue = 10 # Minimum p-value in exponent
numberofintervals = 20 # Number of intervals to be considered
allpvalues = np.logspace(-minimumpvalue, 0, numberofintervals, endpoint=True) # Generating an array of logarithmically spaced p-values
count = 1
with open(os.path.join(folddirec, 'range_list'), 'w') as file:
for value in allpvalues:
file.write('pv_{} 0 {}\n'.format(value, value)) # Writing range information to the 'range_list' file
count = count + 1
pvaluefile = folddirec + os.sep + 'range_list'
# Initializing an empty DataFrame with specified column names
prs_result = pd.DataFrame(columns=["clump_p1", "clump_r2", "clump_kb", "p_window_size", "p_slide_size", "p_LD_threshold",
"pvalue","datafile", "numberofpca","Train_pure_prs", "Train_null_model", "Train_best_model",
"Test_pure_prs", "Test_null_model", "Test_best_model"])
Define Helper Functions#
Perform Clumping and Pruning
Calculate PCA Using Plink
Fit Binary Phenotype and Save Results
Fit Continuous Phenotype and Save Results
import os
import subprocess
import pandas as pd
import statsmodels.api as sm
from sklearn.metrics import explained_variance_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import explained_variance_score
def perform_clumping_and_pruning_on_individual_data(traindirec, newtrainfilename,numberofpca, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
command = [
"./plink",
"--bfile", traindirec+os.sep+newtrainfilename,
"--indep-pairwise", p1_val, p2_val, p3_val,
"--out", traindirec+os.sep+trainfilename
]
subprocess.call(command)
# First perform pruning and then clumping and the pruning.
command = [
"./plink",
"--bfile", traindirec+os.sep+newtrainfilename,
"--clump-p1", c1_val,
"--extract", traindirec+os.sep+trainfilename+".prune.in",
"--clump-r2", c2_val,
"--clump-kb", c3_val,
"--clump", filedirec+os.sep+filedirec+".txt",
"--clump-snp-field", "SNP",
"--clump-field", "P",
"--out", traindirec+os.sep+trainfilename
]
subprocess.call(command)
# Extract the valid SNPs from th clumped file.
# For windows download gwak for linux awk commmand is sufficient.
### For windows require GWAK.
### https://sourceforge.net/projects/gnuwin32/
##3 Get it and place it in the same direc.
#os.system("gawk "+"\""+"NR!=1{print $3}"+"\" "+ traindirec+os.sep+trainfilename+".clumped > "+traindirec+os.sep+trainfilename+".valid.snp")
#print("gawk "+"\""+"NR!=1{print $3}"+"\" "+ traindirec+os.sep+trainfilename+".clumped > "+traindirec+os.sep+trainfilename+".valid.snp")
#Linux:
#Linux:
command = "awk 'NR!=1{{print $3}}' {}{}{}.clumped > {}{}{}.valid.snp".format(
traindirec, os.sep, trainfilename,
traindirec, os.sep, trainfilename
)
os.system(command)
command = [
"./plink",
"--make-bed",
"--bfile", traindirec+os.sep+newtrainfilename,
"--indep-pairwise", p1_val, p2_val, p3_val,
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--out", traindirec+os.sep+newtrainfilename+".clumped.pruned"
]
subprocess.call(command)
command = [
"./plink",
"--make-bed",
"--bfile", traindirec+os.sep+testfilename,
"--indep-pairwise", p1_val, p2_val, p3_val,
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--out", traindirec+os.sep+testfilename+".clumped.pruned"
]
subprocess.call(command)
def calculate_pca_for_traindata_testdata_for_clumped_pruned_snps(traindirec, newtrainfilename,p):
# Calculate the PRS for the test data using the same set of SNPs and also calculate the PCA.
# Also extract the PCA at this point.
# PCA are calculated afer clumping and pruining.
command = [
"./plink",
"--bfile", folddirec+os.sep+testfilename+".clumped.pruned",
# Select the final variants after clumping and pruning.
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--pca", p,
"--out", folddirec+os.sep+testfilename
]
subprocess.call(command)
command = [
"./plink",
"--bfile", traindirec+os.sep+newtrainfilename+".clumped.pruned",
# Select the final variants after clumping and pruning.
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--pca", p,
"--out", traindirec+os.sep+trainfilename
]
subprocess.call(command)
# This function fit the binary model on the PRS.
def fit_binary_phenotype_on_PRS(traindirec, newtrainfilename,p, t,pp,datafile, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
threshold_values = allpvalues
# Merge the covariates, PCA and phenotypes.
tempphenotype_train = pd.read_table(os.path.join(traindirec, newtrainfilename + ".clumped.pruned.fam"), sep="\s+", header=None)
phenotype_train = pd.DataFrame()
phenotype_train["Phenotype"] = tempphenotype_train[5].values
pcs_train = pd.read_table(os.path.join(traindirec, trainfilename + ".eigenvec"), sep="\s+", header=None, names=["FID", "IID"] + ["PC" + str(i) for i in range(1, int(p) + 1)])
covariate_train = pd.read_table(os.path.join(traindirec, trainfilename + ".cov"), sep="\s+")
covariate_train.fillna(0, inplace=True)
covariate_train = covariate_train[covariate_train["FID"].isin(pcs_train["FID"].values) & covariate_train["IID"].isin(pcs_train["IID"].values)]
covariate_train['FID'] = covariate_train['FID'].astype(str)
pcs_train['FID'] = pcs_train['FID'].astype(str)
covariate_train['IID'] = covariate_train['IID'].astype(str)
pcs_train['IID'] = pcs_train['IID'].astype(str)
covandpcs_train = pd.merge(covariate_train, pcs_train, on=["FID", "IID"])
covandpcs_train.fillna(0, inplace=True)
# Scale the covariates
scaler = MinMaxScaler()
normalized_values_train = scaler.fit_transform(covandpcs_train.iloc[:, 2:])
tempphenotype_test = pd.read_table(os.path.join(traindirec, testfilename + ".clumped.pruned.fam"), sep="\s+", header=None)
phenotype_test = pd.DataFrame()
phenotype_test["Phenotype"] = tempphenotype_test[5].values
pcs_test = pd.read_table(os.path.join(traindirec, testfilename + ".eigenvec"), sep="\s+", header=None, names=["FID", "IID"] + ["PC" + str(i) for i in range(1, int(p) + 1)])
covariate_test = pd.read_table(os.path.join(traindirec, testfilename + ".cov"), sep="\s+")
covariate_test.fillna(0, inplace=True)
covariate_test = covariate_test[covariate_test["FID"].isin(pcs_test["FID"].values) & covariate_test["IID"].isin(pcs_test["IID"].values)]
covariate_test['FID'] = covariate_test['FID'].astype(str)
pcs_test['FID'] = pcs_test['FID'].astype(str)
covariate_test['IID'] = covariate_test['IID'].astype(str)
pcs_test['IID'] = pcs_test['IID'].astype(str)
covandpcs_test = pd.merge(covariate_test, pcs_test, on=["FID", "IID"])
covandpcs_test.fillna(0, inplace=True)
normalized_values_test = scaler.transform(covandpcs_test.iloc[:, 2:])
tempalphas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
l1weights = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
tempalphas = [0.1]
l1weights = [0.1]
phenotype_train["Phenotype"] = phenotype_train["Phenotype"].replace({1: 0, 2: 1})
phenotype_test["Phenotype"] = phenotype_test["Phenotype"].replace({1: 0, 2: 1})
for tempalpha in tempalphas:
for l1weight in l1weights:
try:
null_model = sm.Logit(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
except:
print "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
continue
train_null_predicted = null_model.predict(sm.add_constant(covandpcs_train.iloc[:, 2:]))
test_null_predicted = null_model.predict(sm.add_constant(covandpcs_test.iloc[:, 2:]))
global prs_result
for i in threshold_values:
try:
prs_train = pd.read_table(
traindirec + os.sep + Name + os.sep + "train_data.pv_{}.profile".format(i),
sep="\s+",
usecols=["FID", "IID", "SCORE"]
)
except:
continue
prs_train['FID'] = prs_train['FID'].astype(str)
prs_train['IID'] = prs_train['IID'].astype(str)
try:
prs_test = pd.read_table(
traindirec + os.sep + Name + os.sep + "test_data.pv_{}.profile".format(i),
sep="\s+",
usecols=["FID", "IID", "SCORE"]
)
except:
continue
prs_test['FID'] = prs_test['FID'].astype(str)
prs_test['IID'] = prs_test['IID'].astype(str)
pheno_prs_train = pd.merge(covandpcs_train, prs_train, on=["FID", "IID"])
pheno_prs_test = pd.merge(covandpcs_test, prs_test, on=["FID", "IID"])
try:
model = sm.Logit(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
except:
continue
train_best_predicted = model.predict(sm.add_constant(pheno_prs_train.iloc[:, 2:]))
test_best_predicted = model.predict(sm.add_constant(pheno_prs_test.iloc[:, 2:]))
prs_result = prs_result.append({
"clump_p1": c1_val,
"clump_r2": c2_val,
"clump_kb": c3_val,
"p_window_size": p1_val,
"p_slide_size": p2_val,
"p_LD_threshold": p3_val,
"pvalue": i,
"numberofpca": p,
"tempalpha": str(tempalpha),
"l1weight": str(l1weight),
"Tier":t,
"pvalue_AnnoPred":pp,
"datafile":datafile,
"Train_pure_prs": roc_auc_score(phenotype_train["Phenotype"].values, prs_train['SCORE'].values),
"Train_null_model": roc_auc_score(phenotype_train["Phenotype"].values, train_null_predicted),
"Train_best_model": roc_auc_score(phenotype_train["Phenotype"].values, train_best_predicted),
"Test_pure_prs": roc_auc_score(phenotype_test["Phenotype"].values, prs_test['SCORE'].values),
"Test_null_model": roc_auc_score(phenotype_test["Phenotype"].values, test_null_predicted),
"Test_best_model": roc_auc_score(phenotype_test["Phenotype"].values, test_best_predicted),
}, ignore_index=True)
prs_result.to_csv(os.path.join(traindirec, Name, "Results.csv"), index=False)
return
# This function fits the continuous model on the PRS.
def fit_continous_phenotype_on_PRS(traindirec, newtrainfilename,p, t,pp,datafile, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
threshold_values = allpvalues
from sklearn.preprocessing import MinMaxScaler
# Merge the covariates, PCA and phenotypes.
tempphenotype_train = pd.read_table(os.path.join(traindirec, newtrainfilename + ".clumped.pruned.fam"), sep="\s+", header=None)
phenotype_train = pd.DataFrame()
phenotype_train["Phenotype"] = tempphenotype_train[5].values
pcs_train = pd.read_table(os.path.join(traindirec, trainfilename + ".eigenvec"),sep="\s+", header=None,names=["FID", "IID"] + ["PC{}".format(i) for i in range(1, int(p) + 1)])
covariate_train = pd.read_table(traindirec+os.sep+trainfilename+".cov",sep="\s+")
covariate_train = pd.read_table(os.path.join(traindirec, trainfilename + ".cov"), sep="\s+")
covariate_train.fillna(0, inplace=True)
covariate_train = covariate_train[covariate_train["FID"].isin(pcs_train["FID"].values) & covariate_train["IID"].isin(pcs_train["IID"].values)]
covariate_train['FID'] = covariate_train['FID'].astype(str)
pcs_train['FID'] = pcs_train['FID'].astype(str)
covariate_train['IID'] = covariate_train['IID'].astype(str)
pcs_train['IID'] = pcs_train['IID'].astype(str)
covandpcs_train = pd.merge(covariate_train, pcs_train, on=["FID", "IID"])
covandpcs_train.fillna(0, inplace=True)
# Scale the covariates
scaler = MinMaxScaler()
normalized_values_train = scaler.fit_transform(covandpcs_train.iloc[:, 2:])
tempphenotype_test = pd.read_table(os.path.join(traindirec, testfilename + ".clumped.pruned.fam"), sep="\s+", header=None)
phenotype_test = pd.DataFrame()
phenotype_test["Phenotype"] = tempphenotype_test[5].values
pcs_test = pd.read_table(os.path.join(traindirec, testfilename + ".eigenvec"),sep="\s+", header=None,names=["FID", "IID"] + ["PC{}".format(i) for i in range(1, int(p) + 1)])
covariate_test = pd.read_table(os.path.join(traindirec, testfilename + ".cov"), sep="\s+")
covariate_test.fillna(0, inplace=True)
covariate_test = covariate_test[covariate_test["FID"].isin(pcs_test["FID"].values) & covariate_test["IID"].isin(pcs_test["IID"].values)]
covariate_test['FID'] = covariate_test['FID'].astype(str)
pcs_test['FID'] = pcs_test['FID'].astype(str)
covariate_test['IID'] = covariate_test['IID'].astype(str)
pcs_test['IID'] = pcs_test['IID'].astype(str)
covandpcs_test = pd.merge(covariate_test, pcs_test, on=["FID", "IID"])
covandpcs_test.fillna(0, inplace=True)
normalized_values_test = scaler.transform(covandpcs_test.iloc[:, 2:])
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import explained_variance_score
tempalphas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
l1weights = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
tempalphas = [0.1]
l1weights = [0.1]
for tempalpha in tempalphas:
for l1weight in l1weights:
try:
#null_model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
null_model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(covandpcs_train.iloc[:, 2:])).fit()
except:
print "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
continue
train_null_predicted = null_model.predict(sm.add_constant(covandpcs_train.iloc[:, 2:]))
test_null_predicted = null_model.predict(sm.add_constant(covandpcs_test.iloc[:, 2:]))
global prs_result
for i in threshold_values:
try:
prs_train = pd.read_table(
traindirec + os.sep + Name + os.sep + "train_data.pv_{}.profile".format(i),
sep="\s+",
usecols=["FID", "IID", "SCORE"]
)
except:
continue
prs_train['FID'] = prs_train['FID'].astype(str)
prs_train['IID'] = prs_train['IID'].astype(str)
try:
prs_test = pd.read_table(
traindirec + os.sep + Name + os.sep + "test_data.pv_{}.profile".format(i),
sep="\s+",
usecols=["FID", "IID", "SCORE"]
)
except:
continue
prs_test['FID'] = prs_test['FID'].astype(str)
prs_test['IID'] = prs_test['IID'].astype(str)
pheno_prs_train = pd.merge(covandpcs_train, prs_train, on=["FID", "IID"])
pheno_prs_test = pd.merge(covandpcs_test, prs_test, on=["FID", "IID"])
try:
#model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit_regularized(alpha=tempalpha, L1_wt=l1weight)
model = sm.OLS(phenotype_train["Phenotype"], sm.add_constant(pheno_prs_train.iloc[:, 2:])).fit()
except:
continue
train_best_predicted = model.predict(sm.add_constant(pheno_prs_train.iloc[:, 2:]))
test_best_predicted = model.predict(sm.add_constant(pheno_prs_test.iloc[:, 2:]))
prs_result = prs_result.append({
"clump_p1": c1_val,
"clump_r2": c2_val,
"clump_kb": c3_val,
"p_window_size": p1_val,
"p_slide_size": p2_val,
"p_LD_threshold": p3_val,
"pvalue": i,
"numberofpca": p,
"Tier":t,
"pvalue_AnnoPred":pp,
"datafile":datafile,
"tempalpha": str(tempalpha),
"l1weight": str(l1weight),
"Train_pure_prs": explained_variance_score(phenotype_train["Phenotype"].values, prs_train['SCORE'].values),
"Train_null_model": explained_variance_score(phenotype_train["Phenotype"].values, train_null_predicted),
"Train_best_model": explained_variance_score(phenotype_train["Phenotype"].values, train_best_predicted),
"Test_pure_prs": explained_variance_score(phenotype_test["Phenotype"].values, prs_test['SCORE'].values),
"Test_null_model": explained_variance_score(phenotype_test["Phenotype"].values, test_null_predicted),
"Test_best_model": explained_variance_score(phenotype_test["Phenotype"].values, test_best_predicted),
}, ignore_index=True)
prs_result.to_csv(os.path.join(traindirec, Name, "Results.csv"), index=False)
return
Execute AnnoPred#
import os
import subprocess
import pandas as pd
import statsmodels.api as sm
from sklearn.metrics import explained_variance_score
from sklearn.preprocessing import MinMaxScaler
def transform_annopred_data(traindirec, newtrainfilename,numberofpca, tier,pvalue,p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile):
import shutil
import os
def remove_all_in_directory(directory_path):
if not os.path.exists(directory_path):
print "The directory {} does not exist.".format(directory_path)
return
for item in os.listdir(directory_path):
item_path = os.path.join(directory_path, item)
try:
if os.path.isfile(item_path):
os.remove(item_path)
elif os.path.isdir(item_path):
shutil.rmtree(item_path)
except Exception as e:
print "Failed to remove {}. Reason: {}".format(item_path, e)
print "All files and directories in {} have been removed.".format(directory_path)
### First perform clumping on the file and save the clumpled file.
#perform_clumping_and_pruning_on_individual_data(traindirec, newtrainfilename,p, p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile)
#newtrainfilename = newtrainfilename+".clumped.pruned"
#testfilename = testfilename+".clumped.pruned"
#clupmedfile = traindirec+os.sep+newtrainfilename+".clump"
#prunedfile = traindirec+os.sep+newtrainfilename+".clumped.pruned"
# Also extract the PCA at this point for both test and training data.
#calculate_pca_for_traindata_testdata_for_clumped_pruned_snps(traindirec, newtrainfilename,p)
#Extract p-values from the GWAS file.
# Command for Linux.
os.system("awk "+"\'"+"{print $3,$8}"+"\'"+" ./"+filedirec+os.sep+filedirec+".txt > ./"+traindirec+os.sep+"SNP.pvalue")
# Remove the all files in the specific directory.
remove_all_in_directory(traindirec+os.sep+"AnnoPred_test_output")
remove_all_in_directory(traindirec+os.sep+"AnnoPred_tmp_test")
create_directory(traindirec+os.sep+"AnnoPred_test_output")
create_directory(traindirec+os.sep+"AnnoPred_tmp_test")
## AnnoPred overrides the file in the ref directory
## So, we file calculate the hertiability using LDSC and calculate LDSC_file for each tire tire0_ldsc_results
## And passed to AnnoPred.
munge_command = [
'./munge_sumstats.py',
'--out', traindirec+os.sep+"AnnoPred_tmp_test"+os.sep+"Curated_GWAS",
'--merge-alleles', '/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Misc/w_hm3.snplist',
'--N', str(Numberofsamples),
'--sumstats', filedirec+os.sep+filedirec+'.AnnoPred'
]
subprocess.call(munge_command)
# Step 2: Run ldsc.py
ldsc_command = [
'./ldsc.py',
'--h2', traindirec+os.sep+"AnnoPred_tmp_test"+os.sep+"Curated_GWAS.sumstats.gz",
'--ref-ld-chr', '/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/Baseline/baseline.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoCanyon/GenoCanyon_Func.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Brain.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/GI.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Lung.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Heart.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Blood.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Muscle.,'
'/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Annotations/GenoSkyline/Epithelial.',
'--out', traindirec+os.sep+'AnnoPred_tmp_test/tier0_ldsc',
'--overlap-annot',
# This is the AnnoPred reference set
'--frqfile-chr', '/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Misc/1000G.mac5eur.',
'--w-ld-chr', '/data/ascher01/uqmmune1/BenchmarkingPGSTools/ref/Misc/weights.',
'--print-coefficients'
]
subprocess.call(ldsc_command)
command = [
"python",
"AnnoPred.py",
"--sumstats",filedirec + os.sep + filedirec+".AnnoPred",
"--ref_gt",traindirec+os.sep+newtrainfilename+".clumped.pruned",
"--val_gt",traindirec+os.sep+newtrainfilename+".clumped.pruned",
"--coord_out",traindirec+os.sep+"AnnoPred_test_output"+os.sep+"coord_out",
"--N_sample",str(int(Numberofsamples)),
"--annotation_flag",tier,
"--P",str(pvalue),
"--local_ld_prefix",traindirec+os.sep+"AnnoPred_tmp_test"+os.sep+"local_ld",
"--out",traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test",
"--temp_dir",traindirec+os.sep+"AnnoPred_tmp_test"
]
print(" ".join(command))
subprocess.call(command)
data1 = traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test_h2_inf_betas_"+str(pvalue)+".txt"
data2 = traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test_h2_non_inf_betas_"+str(pvalue)+".txt"
data3 = traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test_pT_inf_betas_"+str(pvalue)+".txt"
data4 = traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test_pT_non_inf_betas_"+str(pvalue)+".txt"
datafiles = [data1,data2,data3,data4]
for datafile in datafiles:
# Calculate Plink Score.
try:
tempgwas = pd.read_csv(traindirec+os.sep+"AnnoPred_test_output"+os.sep+"test_h2_inf_betas_"+str(pvalue)+".txt",sep="\s+" )
except:
print("GWAS not generated!")
return
if check_phenotype_is_binary_or_continous(filedirec)=="Binary":
tempgwas["AnnoPred_inf_beta"] = np.exp(tempgwas["AnnoPred_inf_beta"])
else:
pass
tempgwas = tempgwas.rename(columns={"sid": "SNP", "nt1": "A1", "AnnoPred_inf_beta": "BETA"})
tempgwas[["SNP","A1","BETA"]].to_csv(traindirec+os.sep+"AnnoPred_GWAS.txt",sep="\t",index=False)
command = [
"./plink",
"--bfile", traindirec+os.sep+newtrainfilename+".clumped.pruned",
### SNP column = 3, Effect allele column 1 = 4, OR column=9
"--score", traindirec+os.sep+"AnnoPred_GWAS.txt", "1", "2", "3", "header",
"--q-score-range", traindirec+os.sep+"range_list",traindirec+os.sep+"SNP.pvalue",
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--out", traindirec+os.sep+Name+os.sep+trainfilename
]
subprocess.call(command)
# Calculate the PRS for the test data using the same set of SNPs and also calculate the PCA.
command = [
"./plink",
"--bfile", folddirec+os.sep+testfilename+".clumped.pruned",
### SNP column = 3, Effect allele column 1 = 4, OR column=9
"--score", traindirec+os.sep+"AnnoPred_GWAS.txt", "1", "2", "3", "header",
"--q-score-range", traindirec+os.sep+"range_list",traindirec+os.sep+"SNP.pvalue",
"--extract", traindirec+os.sep+trainfilename+".valid.snp",
"--out", folddirec+os.sep+Name+os.sep+testfilename
]
subprocess.call(command)
if check_phenotype_is_binary_or_continous(filedirec)=="Binary":
print("Binary Phenotype!")
fit_binary_phenotype_on_PRS(traindirec, newtrainfilename,p,t,pvalue,os.path.basename(datafile), p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile)
else:
print("Continous Phenotype!")
fit_continous_phenotype_on_PRS(traindirec, newtrainfilename,p, t,pvalue,os.path.basename(datafile), p1_val, p2_val, p3_val, c1_val, c2_val, c3_val,Name,pvaluefile)
# AnnoPred offers 4 tires of calculating the P
# tier0: baseline + GenoCanyon + 7 GenoSkyline (Brain, GI, Lung, Heart, Blood, Muscle, Epithelial)
# tier1: baseline + GenoCanyon
# tier2: baseline + GenoCanyon + 7 GenoSkyline_Plus (Immune, Brain, CV, Muscle, GI, Epithelial)
# tier3: baseline + GenoCanyon + 66 GenoSkyline
tires = ['tier0','tier1','tier2','tier3']
tires = ['tier0']
tempallpvalues = [allpvalues[-1]]
result_directory = "AnnoPred"
# Nested loops to iterate over different parameter values
create_directory(folddirec+os.sep+result_directory)
for p1_val in p_window_size:
for p2_val in p_slide_size:
for p3_val in p_LD_threshold:
for c1_val in clump_p1:
for c2_val in clump_r2:
for c3_val in clump_kb:
for p in numberofpca:
for t in tires:
for pvalue in tempallpvalues:
transform_annopred_data(folddirec, newtrainfilename, p,t,pvalue, str(p1_val), str(p2_val), str(p3_val), str(c1_val), str(c2_val), str(c3_val), result_directory, pvaluefile)
python AnnoPred.py --sumstats SampleData1/SampleData1.AnnoPred --ref_gt SampleData1/Fold_0/train_data.QC.clumped.pruned --val_gt SampleData1/Fold_0/train_data.QC.clumped.pruned --coord_out SampleData1/Fold_0/AnnoPred_test_output/coord_out --N_sample 388028 --annotation_flag tier0 --P 1.0 --local_ld_prefix SampleData1/Fold_0/AnnoPred_tmp_test/local_ld --out SampleData1/Fold_0/AnnoPred_test_output/test --temp_dir SampleData1/Fold_0/AnnoPred_tmp_test
Continous Phenotype!
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:233: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:236: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:238: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:239: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:253: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:256: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:257: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:298: FutureWarning: read_table is deprecated, use read_csv instead.
/data/ascher01/uqmmune1/miniconda3/envs/ldscc/lib/python2.7/site-packages/ipykernel_launcher.py:309: FutureWarning: read_table is deprecated, use read_csv instead.
Continous Phenotype!
Continous Phenotype!
Continous Phenotype!
Repeat the process for each fold.#
Change the foldnumber
variable.
#foldnumber = sys.argv[1]
foldnumber = "0" # Setting 'foldnumber' to "0"
Or uncomment the following line:
# foldnumber = sys.argv[1]
python AnnoPredCode.py 0
python AnnoPredCode.py 1
python AnnoPredCode.py 2
python AnnoPredCode.py 3
python AnnoPredCode.py 4
The following files should exist after the execution:
SampleData1/Fold_0/AnnoPred/Results.csv
SampleData1/Fold_1/AnnoPred/Results.csv
SampleData1/Fold_2/AnnoPred/Results.csv
SampleData1/Fold_3/AnnoPred/Results.csv
SampleData1/Fold_4/AnnoPred/Results.csv
Check the results file for each fold.#
import os
import pandas as pd
# List of file names to check for existence
f = [
"./"+filedirec+"/Fold_0"+os.sep+result_directory+"Results.csv",
"./"+filedirec+"/Fold_1"+os.sep+result_directory+"Results.csv",
"./"+filedirec+"/Fold_2"+os.sep+result_directory+"Results.csv",
"./"+filedirec+"/Fold_3"+os.sep+result_directory+"Results.csv",
"./"+filedirec+"/Fold_4"+os.sep+result_directory+"Results.csv",
]
# Loop through each file name in the list
for loop in range(0,5):
# Check if the file exists in the specified directory for the given fold
if os.path.exists(filedirec+os.sep+"Fold_"+str(loop)+os.sep+result_directory+os.sep+"Results.csv"):
temp = pd.read_csv(filedirec+os.sep+"Fold_"+str(loop)+os.sep+result_directory+os.sep+"Results.csv")
print("Fold_",loop, "Yes, the file exists.")
#print(temp.head())
print("Number of P-values processed: ",len(temp))
# Print a message indicating that the file exists
else:
# Print a message indicating that the file does not exist
print("Fold_",loop, "No, the file does not exist.")
('Fold_', 0, 'Yes, the file exists.')
('Number of P-values processed: ', 80)
('Fold_', 1, 'Yes, the file exists.')
('Number of P-values processed: ', 80)
('Fold_', 2, 'Yes, the file exists.')
('Number of P-values processed: ', 80)
('Fold_', 3, 'Yes, the file exists.')
('Number of P-values processed: ', 80)
('Fold_', 4, 'Yes, the file exists.')
('Number of P-values processed: ', 80)
Sum the results for each fold.#
print("We have to ensure when we sum the entries across all Folds, the same rows are merged!")
def sum_and_average_columns(data_frames):
"""Sum and average numerical columns across multiple DataFrames, and keep non-numerical columns unchanged."""
# Initialize DataFrame to store the summed results for numerical columns
summed_df = pd.DataFrame()
non_numerical_df = pd.DataFrame()
for df in data_frames:
# Identify numerical and non-numerical columns
numerical_cols = df.select_dtypes(include=[np.number]).columns
non_numerical_cols = df.select_dtypes(exclude=[np.number]).columns
# Sum numerical columns
if summed_df.empty:
summed_df = pd.DataFrame(0, index=range(len(df)), columns=numerical_cols)
summed_df[numerical_cols] = summed_df[numerical_cols].add(df[numerical_cols], fill_value=0)
# Keep non-numerical columns (take the first non-numerical entry for each column)
if non_numerical_df.empty:
non_numerical_df = df[non_numerical_cols]
else:
non_numerical_df[non_numerical_cols] = non_numerical_df[non_numerical_cols].combine_first(df[non_numerical_cols])
# Divide the summed values by the number of dataframes to get the average
averaged_df = summed_df / len(data_frames)
# Combine numerical and non-numerical DataFrames
result_df = pd.concat([averaged_df, non_numerical_df], axis=1)
return result_df
from functools import reduce
import numpy as np
import os
import pandas as pd
from functools import reduce
def dataframe_to_markdown(df):
# Create the header
header = "| " + " | ".join(df.columns) + " |"
separator = "| " + " | ".join(['---'] * len(df.columns)) + " |"
# Create the rows
rows = []
for index, row in df.iterrows():
row_string = "| " + " | ".join([str(item) for item in row]) + " |"
rows.append(row_string)
# Combine all parts into the final markdown string
markdown = header + "\n" + separator + "\n" + "\n".join(rows)
return markdown
def find_common_rows(allfoldsframe):
# Define the performance columns that need to be excluded
performance_columns = [
'Train_null_model', 'Train_pure_prs', 'Train_best_model',
'Test_pure_prs', 'Test_null_model', 'Test_best_model'
]
important_columns = [
'clump_p1',
'clump_r2',
'clump_kb',
'p_window_size',
'p_slide_size',
'p_LD_threshold',
'pvalue',
'referencepanel',
'PRSice-2_Model',
'effectsizes',
'h2model',
"Tier",
"pvalue_AnnoPred",
"datafile",
]
# Function to remove performance columns from a DataFrame
def drop_performance_columns(df):
return df.drop(columns=performance_columns, errors='ignore')
def get_important_columns(df ):
existing_columns = [col for col in important_columns if col in df.columns]
if existing_columns:
return df[existing_columns].copy()
else:
return pd.DataFrame()
# Drop performance columns from all DataFrames in the list
allfoldsframe_dropped = [drop_performance_columns(df) for df in allfoldsframe]
# Get the important columns.
allfoldsframe_dropped = [get_important_columns(df) for df in allfoldsframe_dropped]
common_rows = allfoldsframe_dropped[0]
print(dataframe_to_markdown(common_rows.head()))
for i in range(1, len(allfoldsframe_dropped)):
# Get the next DataFrame
next_df = allfoldsframe_dropped[i]
# Count unique rows in the current DataFrame and the next DataFrame
unique_in_common = common_rows.shape[0]
unique_in_next = next_df.shape[0]
# Find common rows between the current common_rows and the next DataFrame
common_rows = pd.merge(common_rows, next_df, how='inner')
# Count the common rows after merging
common_count = common_rows.shape[0]
print(dataframe_to_markdown(common_rows.head()))
# Print the unique and common row counts
print("Iteration {}:".format(i))
print("Unique rows in current common DataFrame: {}".format(unique_in_common))
print("Unique rows in next DataFrame: {}".format(unique_in_next))
print("Common rows after merge: {}\n".format(common_count))
# Now that we have the common rows, extract these from the original DataFrames
extracted_common_rows_frames = []
for original_df in allfoldsframe:
# Merge the common rows with the original DataFrame, keeping only the rows that match the common rows
extracted_common_rows = pd.merge(common_rows, original_df, how='inner', on=common_rows.columns.tolist())
# Add the DataFrame with the extracted common rows to the list
extracted_common_rows_frames.append(extracted_common_rows)
# Print the number of rows in the common DataFrames
for i, df in enumerate(extracted_common_rows_frames):
print("DataFrame {} with extracted common rows has {} rows.".format(i + 1, df.shape[0]))
# Return the list of DataFrames with extracted common rows
return extracted_common_rows_frames
# Example usage (assuming allfoldsframe is populated as shown earlier):
allfoldsframe = []
# Loop through each file name in the list
for loop in range(0, 5):
# Check if the file exists in the specified directory for the given fold
file_path = os.path.join(filedirec, "Fold_" + str(loop), result_directory, "Results.csv")
if os.path.exists(file_path):
allfoldsframe.append(pd.read_csv(file_path))
# Print a message indicating that the file exists
print("Fold_", loop, "Yes, the file exists.")
else:
# Print a message indicating that the file does not exist
print("Fold_", loop, "No, the file does not exist.")
# Find the common rows across all folds and return the list of extracted common rows
extracted_common_rows_list = find_common_rows(allfoldsframe)
# Sum the values column-wise
# For string values, do not sum it the values are going to be the same for each fold.
# Only sum the numeric values.
divided_result = sum_and_average_columns(extracted_common_rows_list)
print(divided_result)
We have to ensure when we sum the entries across all Folds, the same rows are merged!
('Fold_', 0, 'Yes, the file exists.')
('Fold_', 1, 'Yes, the file exists.')
('Fold_', 2, 'Yes, the file exists.')
('Fold_', 3, 'Yes, the file exists.')
('Fold_', 4, 'Yes, the file exists.')
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | Tier | pvalue_AnnoPred | datafile |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | Tier | pvalue_AnnoPred | datafile |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
Iteration 1:
Unique rows in current common DataFrame: 80
Unique rows in next DataFrame: 80
Common rows after merge: 80
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | Tier | pvalue_AnnoPred | datafile |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
Iteration 2:
Unique rows in current common DataFrame: 80
Unique rows in next DataFrame: 80
Common rows after merge: 80
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | Tier | pvalue_AnnoPred | datafile |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
Iteration 3:
Unique rows in current common DataFrame: 80
Unique rows in next DataFrame: 80
Common rows after merge: 80
| clump_p1 | clump_r2 | clump_kb | p_window_size | p_slide_size | p_LD_threshold | pvalue | Tier | pvalue_AnnoPred | datafile |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.35981828628e-10 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.12883789168e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 3.79269019073e-09 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
| 1 | 0.1 | 200 | 200 | 50 | 0.25 | 1.2742749857e-08 | tier0 | 1.0 | test_h2_inf_betas_1.0.txt |
Iteration 4:
Unique rows in current common DataFrame: 80
Unique rows in next DataFrame: 80
Common rows after merge: 80
DataFrame 1 with extracted common rows has 80 rows.
DataFrame 2 with extracted common rows has 80 rows.
DataFrame 3 with extracted common rows has 80 rows.
DataFrame 4 with extracted common rows has 80 rows.
DataFrame 5 with extracted common rows has 80 rows.
clump_p1 clump_r2 clump_kb p_window_size p_slide_size p_LD_threshold \
0 1.0 0.1 200.0 200.0 50.0 0.25
1 1.0 0.1 200.0 200.0 50.0 0.25
2 1.0 0.1 200.0 200.0 50.0 0.25
3 1.0 0.1 200.0 200.0 50.0 0.25
4 1.0 0.1 200.0 200.0 50.0 0.25
5 1.0 0.1 200.0 200.0 50.0 0.25
6 1.0 0.1 200.0 200.0 50.0 0.25
7 1.0 0.1 200.0 200.0 50.0 0.25
8 1.0 0.1 200.0 200.0 50.0 0.25
9 1.0 0.1 200.0 200.0 50.0 0.25
10 1.0 0.1 200.0 200.0 50.0 0.25
11 1.0 0.1 200.0 200.0 50.0 0.25
12 1.0 0.1 200.0 200.0 50.0 0.25
13 1.0 0.1 200.0 200.0 50.0 0.25
14 1.0 0.1 200.0 200.0 50.0 0.25
15 1.0 0.1 200.0 200.0 50.0 0.25
16 1.0 0.1 200.0 200.0 50.0 0.25
17 1.0 0.1 200.0 200.0 50.0 0.25
18 1.0 0.1 200.0 200.0 50.0 0.25
19 1.0 0.1 200.0 200.0 50.0 0.25
20 1.0 0.1 200.0 200.0 50.0 0.25
21 1.0 0.1 200.0 200.0 50.0 0.25
22 1.0 0.1 200.0 200.0 50.0 0.25
23 1.0 0.1 200.0 200.0 50.0 0.25
24 1.0 0.1 200.0 200.0 50.0 0.25
25 1.0 0.1 200.0 200.0 50.0 0.25
26 1.0 0.1 200.0 200.0 50.0 0.25
27 1.0 0.1 200.0 200.0 50.0 0.25
28 1.0 0.1 200.0 200.0 50.0 0.25
29 1.0 0.1 200.0 200.0 50.0 0.25
.. ... ... ... ... ... ...
50 1.0 0.1 200.0 200.0 50.0 0.25
51 1.0 0.1 200.0 200.0 50.0 0.25
52 1.0 0.1 200.0 200.0 50.0 0.25
53 1.0 0.1 200.0 200.0 50.0 0.25
54 1.0 0.1 200.0 200.0 50.0 0.25
55 1.0 0.1 200.0 200.0 50.0 0.25
56 1.0 0.1 200.0 200.0 50.0 0.25
57 1.0 0.1 200.0 200.0 50.0 0.25
58 1.0 0.1 200.0 200.0 50.0 0.25
59 1.0 0.1 200.0 200.0 50.0 0.25
60 1.0 0.1 200.0 200.0 50.0 0.25
61 1.0 0.1 200.0 200.0 50.0 0.25
62 1.0 0.1 200.0 200.0 50.0 0.25
63 1.0 0.1 200.0 200.0 50.0 0.25
64 1.0 0.1 200.0 200.0 50.0 0.25
65 1.0 0.1 200.0 200.0 50.0 0.25
66 1.0 0.1 200.0 200.0 50.0 0.25
67 1.0 0.1 200.0 200.0 50.0 0.25
68 1.0 0.1 200.0 200.0 50.0 0.25
69 1.0 0.1 200.0 200.0 50.0 0.25
70 1.0 0.1 200.0 200.0 50.0 0.25
71 1.0 0.1 200.0 200.0 50.0 0.25
72 1.0 0.1 200.0 200.0 50.0 0.25
73 1.0 0.1 200.0 200.0 50.0 0.25
74 1.0 0.1 200.0 200.0 50.0 0.25
75 1.0 0.1 200.0 200.0 50.0 0.25
76 1.0 0.1 200.0 200.0 50.0 0.25
77 1.0 0.1 200.0 200.0 50.0 0.25
78 1.0 0.1 200.0 200.0 50.0 0.25
79 1.0 0.1 200.0 200.0 50.0 0.25
pvalue pvalue_AnnoPred numberofpca Train_pure_prs \
0 1.000000e-10 1.0 6.0 0.000017
1 3.359818e-10 1.0 6.0 0.000018
2 1.128838e-09 1.0 6.0 0.000027
3 3.792690e-09 1.0 6.0 0.000032
4 1.274275e-08 1.0 6.0 0.000029
5 4.281332e-08 1.0 6.0 0.000023
6 1.438450e-07 1.0 6.0 0.000024
7 4.832930e-07 1.0 6.0 0.000018
8 1.623777e-06 1.0 6.0 0.000019
9 5.455595e-06 1.0 6.0 0.000019
10 1.832981e-05 1.0 6.0 0.000021
11 6.158482e-05 1.0 6.0 0.000019
12 2.069138e-04 1.0 6.0 0.000016
13 6.951928e-04 1.0 6.0 0.000013
14 2.335721e-03 1.0 6.0 0.000011
15 7.847600e-03 1.0 6.0 0.000009
16 2.636651e-02 1.0 6.0 0.000007
17 8.858668e-02 1.0 6.0 0.000004
18 2.976351e-01 1.0 6.0 0.000003
19 1.000000e+00 1.0 6.0 0.000001
20 1.000000e-10 1.0 6.0 0.000017
21 3.359818e-10 1.0 6.0 0.000018
22 1.128838e-09 1.0 6.0 0.000027
23 3.792690e-09 1.0 6.0 0.000032
24 1.274275e-08 1.0 6.0 0.000029
25 4.281332e-08 1.0 6.0 0.000023
26 1.438450e-07 1.0 6.0 0.000024
27 4.832930e-07 1.0 6.0 0.000018
28 1.623777e-06 1.0 6.0 0.000019
29 5.455595e-06 1.0 6.0 0.000019
.. ... ... ... ...
50 1.832981e-05 1.0 6.0 0.000021
51 6.158482e-05 1.0 6.0 0.000019
52 2.069138e-04 1.0 6.0 0.000016
53 6.951928e-04 1.0 6.0 0.000013
54 2.335721e-03 1.0 6.0 0.000011
55 7.847600e-03 1.0 6.0 0.000009
56 2.636651e-02 1.0 6.0 0.000007
57 8.858668e-02 1.0 6.0 0.000004
58 2.976351e-01 1.0 6.0 0.000003
59 1.000000e+00 1.0 6.0 0.000001
60 1.000000e-10 1.0 6.0 0.000017
61 3.359818e-10 1.0 6.0 0.000018
62 1.128838e-09 1.0 6.0 0.000027
63 3.792690e-09 1.0 6.0 0.000032
64 1.274275e-08 1.0 6.0 0.000029
65 4.281332e-08 1.0 6.0 0.000023
66 1.438450e-07 1.0 6.0 0.000024
67 4.832930e-07 1.0 6.0 0.000018
68 1.623777e-06 1.0 6.0 0.000019
69 5.455595e-06 1.0 6.0 0.000019
70 1.832981e-05 1.0 6.0 0.000021
71 6.158482e-05 1.0 6.0 0.000019
72 2.069138e-04 1.0 6.0 0.000016
73 6.951928e-04 1.0 6.0 0.000013
74 2.335721e-03 1.0 6.0 0.000011
75 7.847600e-03 1.0 6.0 0.000009
76 2.636651e-02 1.0 6.0 0.000007
77 8.858668e-02 1.0 6.0 0.000004
78 2.976351e-01 1.0 6.0 0.000003
79 1.000000e+00 1.0 6.0 0.000001
Train_null_model Train_best_model Test_pure_prs Test_null_model \
0 0.23001 0.232415 0.000009 0.118692
1 0.23001 0.232588 0.000017 0.118692
2 0.23001 0.236427 0.000031 0.118692
3 0.23001 0.241038 0.000037 0.118692
4 0.23001 0.243177 0.000033 0.118692
5 0.23001 0.242658 0.000027 0.118692
6 0.23001 0.246455 0.000029 0.118692
7 0.23001 0.246647 0.000023 0.118692
8 0.23001 0.253509 0.000024 0.118692
9 0.23001 0.266624 0.000021 0.118692
10 0.23001 0.291437 0.000023 0.118692
11 0.23001 0.301691 0.000020 0.118692
12 0.23001 0.311315 0.000017 0.118692
13 0.23001 0.313856 0.000014 0.118692
14 0.23001 0.322171 0.000011 0.118692
15 0.23001 0.343210 0.000010 0.118692
16 0.23001 0.360453 0.000008 0.118692
17 0.23001 0.352818 0.000005 0.118692
18 0.23001 0.361058 0.000003 0.118692
19 0.23001 0.362624 0.000002 0.118692
20 0.23001 0.232415 0.000009 0.118692
21 0.23001 0.232588 0.000017 0.118692
22 0.23001 0.236427 0.000031 0.118692
23 0.23001 0.241038 0.000037 0.118692
24 0.23001 0.243177 0.000033 0.118692
25 0.23001 0.242658 0.000027 0.118692
26 0.23001 0.246455 0.000029 0.118692
27 0.23001 0.246647 0.000023 0.118692
28 0.23001 0.253509 0.000024 0.118692
29 0.23001 0.266624 0.000021 0.118692
.. ... ... ... ...
50 0.23001 0.291437 0.000023 0.118692
51 0.23001 0.301691 0.000020 0.118692
52 0.23001 0.311315 0.000017 0.118692
53 0.23001 0.313856 0.000014 0.118692
54 0.23001 0.322171 0.000011 0.118692
55 0.23001 0.343210 0.000010 0.118692
56 0.23001 0.360453 0.000008 0.118692
57 0.23001 0.352818 0.000005 0.118692
58 0.23001 0.361058 0.000003 0.118692
59 0.23001 0.362624 0.000002 0.118692
60 0.23001 0.232415 0.000009 0.118692
61 0.23001 0.232588 0.000017 0.118692
62 0.23001 0.236427 0.000031 0.118692
63 0.23001 0.241038 0.000037 0.118692
64 0.23001 0.243177 0.000033 0.118692
65 0.23001 0.242658 0.000027 0.118692
66 0.23001 0.246455 0.000029 0.118692
67 0.23001 0.246647 0.000023 0.118692
68 0.23001 0.253509 0.000024 0.118692
69 0.23001 0.266624 0.000021 0.118692
70 0.23001 0.291437 0.000023 0.118692
71 0.23001 0.301691 0.000020 0.118692
72 0.23001 0.311315 0.000017 0.118692
73 0.23001 0.313856 0.000014 0.118692
74 0.23001 0.322171 0.000011 0.118692
75 0.23001 0.343210 0.000010 0.118692
76 0.23001 0.360453 0.000008 0.118692
77 0.23001 0.352818 0.000005 0.118692
78 0.23001 0.361058 0.000003 0.118692
79 0.23001 0.362624 0.000002 0.118692
Test_best_model l1weight tempalpha Tier datafile
0 0.124464 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
1 0.122845 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
2 0.135947 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
3 0.141388 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
4 0.146849 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
5 0.147139 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
6 0.156848 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
7 0.155471 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
8 0.163486 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
9 0.182181 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
10 0.221274 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
11 0.233316 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
12 0.233093 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
13 0.241143 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
14 0.264164 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
15 0.283059 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
16 0.315101 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
17 0.306749 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
18 0.318931 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
19 0.328600 0.1 0.1 tier0 test_h2_inf_betas_1.0.txt
20 0.124464 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
21 0.122845 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
22 0.135947 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
23 0.141388 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
24 0.146849 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
25 0.147139 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
26 0.156848 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
27 0.155471 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
28 0.163486 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
29 0.182181 0.1 0.1 tier0 test_h2_non_inf_betas_1.0.txt
.. ... ... ... ... ...
50 0.221274 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
51 0.233316 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
52 0.233093 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
53 0.241143 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
54 0.264164 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
55 0.283059 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
56 0.315101 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
57 0.306749 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
58 0.318931 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
59 0.328600 0.1 0.1 tier0 test_pT_inf_betas_1.0.txt
60 0.124464 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
61 0.122845 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
62 0.135947 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
63 0.141388 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
64 0.146849 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
65 0.147139 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
66 0.156848 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
67 0.155471 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
68 0.163486 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
69 0.182181 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
70 0.221274 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
71 0.233316 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
72 0.233093 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
73 0.241143 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
74 0.264164 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
75 0.283059 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
76 0.315101 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
77 0.306749 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
78 0.318931 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
79 0.328600 0.1 0.1 tier0 test_pT_non_inf_betas_1.0.txt
[80 rows x 19 columns]
Results#
1. Reporting Based on Best Training Performance:#
One can report the results based on the best performance of the training data. For example, if for a specific combination of hyperparameters, the training performance is high, report the corresponding test performance.
Example code:
df = divided_result.sort_values(by='Train_best_model', ascending=False) print(df.iloc[0].to_markdown())
Binary Phenotypes Result Analysis#
You can find the performance quality for binary phenotype using the following template:
This figure shows the 8 different scenarios that can exist in the results, and the following table explains each scenario.
We classified performance based on the following table:
Performance Level |
Range |
---|---|
Low Performance |
0 to 0.5 |
Moderate Performance |
0.6 to 0.7 |
High Performance |
0.8 to 1 |
You can match the performance based on the following scenarios:
Scenario |
What’s Happening |
Implication |
---|---|---|
High Test, High Train |
The model performs well on both training and test datasets, effectively learning the underlying patterns. |
The model is well-tuned, generalizes well, and makes accurate predictions on both datasets. |
High Test, Moderate Train |
The model generalizes well but may not be fully optimized on training data, missing some underlying patterns. |
The model is fairly robust but may benefit from further tuning or more training to improve its learning. |
High Test, Low Train |
An unusual scenario, potentially indicating data leakage or overestimation of test performance. |
The model’s performance is likely unreliable; investigate potential data issues or random noise. |
Moderate Test, High Train |
The model fits the training data well but doesn’t generalize as effectively, capturing only some test patterns. |
The model is slightly overfitting; adjustments may be needed to improve generalization on unseen data. |
Moderate Test, Moderate Train |
The model shows balanced but moderate performance on both datasets, capturing some patterns but missing others. |
The model is moderately fitting; further improvements could be made in both training and generalization. |
Moderate Test, Low Train |
The model underperforms on training data and doesn’t generalize well, leading to moderate test performance. |
The model may need more complexity, additional features, or better training to improve on both datasets. |
Low Test, High Train |
The model overfits the training data, performing poorly on the test set. |
The model doesn’t generalize well; simplifying the model or using regularization may help reduce overfitting. |
Low Test, Low Train |
The model performs poorly on both training and test datasets, failing to learn the data patterns effectively. |
The model is underfitting; it may need more complexity, additional features, or more data to improve performance. |
Recommendations for Publishing Results#
When publishing results, scenarios with moderate train and moderate test performance can be used for complex phenotypes or diseases. However, results showing high train and moderate test, high train and high test, and moderate train and high test are recommended.
For most phenotypes, results typically fall in the moderate train and moderate test performance category.
Continuous Phenotypes Result Analysis#
You can find the performance quality for continuous phenotypes using the following template:
This figure shows the 8 different scenarios that can exist in the results, and the following table explains each scenario.
We classified performance based on the following table:
Performance Level |
Range |
---|---|
Low Performance |
0 to 0.2 |
Moderate Performance |
0.3 to 0.7 |
High Performance |
0.8 to 1 |
You can match the performance based on the following scenarios:
Scenario |
What’s Happening |
Implication |
---|---|---|
High Test, High Train |
The model performs well on both training and test datasets, effectively learning the underlying patterns. |
The model is well-tuned, generalizes well, and makes accurate predictions on both datasets. |
High Test, Moderate Train |
The model generalizes well but may not be fully optimized on training data, missing some underlying patterns. |
The model is fairly robust but may benefit from further tuning or more training to improve its learning. |
High Test, Low Train |
An unusual scenario, potentially indicating data leakage or overestimation of test performance. |
The model’s performance is likely unreliable; investigate potential data issues or random noise. |
Moderate Test, High Train |
The model fits the training data well but doesn’t generalize as effectively, capturing only some test patterns. |
The model is slightly overfitting; adjustments may be needed to improve generalization on unseen data. |
Moderate Test, Moderate Train |
The model shows balanced but moderate performance on both datasets, capturing some patterns but missing others. |
The model is moderately fitting; further improvements could be made in both training and generalization. |
Moderate Test, Low Train |
The model underperforms on training data and doesn’t generalize well, leading to moderate test performance. |
The model may need more complexity, additional features, or better training to improve on both datasets. |
Low Test, High Train |
The model overfits the training data, performing poorly on the test set. |
The model doesn’t generalize well; simplifying the model or using regularization may help reduce overfitting. |
Low Test, Low Train |
The model performs poorly on both training and test datasets, failing to learn the data patterns effectively. |
The model is underfitting; it may need more complexity, additional features, or more data to improve performance. |
Recommendations for Publishing Results#
When publishing results, scenarios with moderate train and moderate test performance can be used for complex phenotypes or diseases. However, results showing high train and moderate test, high train and high test, and moderate train and high test are recommended.
For most continuous phenotypes, results typically fall in the moderate train and moderate test performance category.
2. Reporting Generalized Performance:#
One can also report the generalized performance by calculating the difference between the training and test performance, and the sum of the test and training performance. Report the result or hyperparameter combination for which the sum is high and the difference is minimal.
Example code:
df = divided_result.copy() df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model']) df['Sum'] = df['Train_best_model'] + df['Test_best_model'] sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True]) print(sorted_df.iloc[0].to_markdown())
3. Reporting Hyperparameters Affecting Test and Train Performance:#
Find the hyperparameters that have more than one unique value and calculate their correlation with the following columns to understand how they are affecting the performance of train and test sets:
Train_null_model
Train_pure_prs
Train_best_model
Test_pure_prs
Test_null_model
Test_best_model
4. Other Analysis#
Once you have the results, you can find how hyperparameters affect the model performance.
Analysis, like overfitting and underfitting, can be performed as well.
The way you are going to report the results can vary.
Results can be visualized, and other patterns in the data can be explored.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib notebook
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
# In Python 2, use 'plt.ion()' to enable interactive mode
plt.ion()
df = divided_result.sort_values(by='Train_best_model', ascending=False)
print("1. Reporting Based on Best Training Performance:\n")
print(df.iloc[0])
df = divided_result.copy()
# Plot Train and Test best models against p-values
plt.figure(figsize=(10, 6))
plt.plot(df['pvalue'], df['Train_best_model'], label='Train_best_model', marker='o', color='royalblue')
plt.plot(df['pvalue'], df['Test_best_model'], label='Test_best_model', marker='o', color='darkorange')
# Highlight the p-value where both train and test are high
best_index = df[['Train_best_model']].sum(axis=1).idxmax()
best_pvalue = df.loc[best_index, 'pvalue']
best_train = df.loc[best_index, 'Train_best_model']
best_test = df.loc[best_index, 'Test_best_model']
# Use dark colors for the circles
plt.scatter(best_pvalue, best_train, color='darkred', s=100, label='Best Performance (Train)', edgecolor='black', zorder=5)
plt.scatter(best_pvalue, best_test, color='darkblue', s=100, label='Best Performance (Test)', edgecolor='black', zorder=5)
# Annotate the best performance with p-value, train, and test values
plt.text(best_pvalue, best_train, 'p=%0.4g\nTrain=%0.4g' % (best_pvalue, best_train), ha='right', va='bottom', fontsize=9, color='darkred')
plt.text(best_pvalue, best_test, 'p=%0.4g\nTest=%0.4g' % (best_pvalue, best_test), ha='right', va='top', fontsize=9, color='darkblue')
# Calculate Difference and Sum
df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model'])
df['Sum'] = df['Train_best_model'] + df['Test_best_model']
# Sort the DataFrame
sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True])
# Highlight the general performance
general_index = sorted_df.index[0]
general_pvalue = sorted_df.loc[general_index, 'pvalue']
general_train = sorted_df.loc[general_index, 'Train_best_model']
general_test = sorted_df.loc[general_index, 'Test_best_model']
plt.scatter(general_pvalue, general_train, color='darkgreen', s=150, label='General Performance (Train)', edgecolor='black', zorder=6)
plt.scatter(general_pvalue, general_test, color='darkorange', s=150, label='General Performance (Test)', edgecolor='black', zorder=6)
# Annotate the general performance with p-value, train, and test values
plt.text(general_pvalue, general_train, 'p=%0.4g\nTrain=%0.4g' % (general_pvalue, general_train), ha='right', va='bottom', fontsize=9, color='darkgreen')
plt.text(general_pvalue, general_test, 'p=%0.4g\nTest=%0.4g' % (general_pvalue, general_test), ha='right', va='top', fontsize=9, color='darkorange')
# Add labels and legend
plt.xlabel('p-value')
plt.ylabel('Model Performance')
plt.title('Train vs Test Best Models')
plt.legend()
plt.show()
print("2. Reporting Generalized Performance:\n")
df = divided_result.copy()
df['Difference'] = abs(df['Train_best_model'] - df['Test_best_model'])
df['Sum'] = df['Train_best_model'] + df['Test_best_model']
sorted_df = df.sort_values(by=['Sum', 'Difference'], ascending=[False, True])
print(sorted_df.iloc[0])
print("3. Reporting the correlation of hyperparameters and the performance of 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model':\n")
print("3. For string hyperparameters, we used one-hot encoding to find the correlation between string hyperparameters and 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model'.")
print("3. We performed this analysis for those hyperparameters that have more than one unique value.")
correlation_columns = [
'Train_null_model', 'Train_pure_prs', 'Train_best_model',
'Test_pure_prs', 'Test_null_model', 'Test_best_model'
]
hyperparams = [col for col in divided_result.columns if len(divided_result[col].unique()) > 1]
hyperparams = list(set(hyperparams + correlation_columns))
# Separate numeric and string columns
numeric_hyperparams = [col for col in hyperparams if pd.api.types.is_numeric_dtype(divided_result[col])]
string_hyperparams = [col for col in hyperparams if pd.api.types.is_string_dtype(divided_result[col])]
# Encode string columns using one-hot encoding
divided_result_encoded = pd.get_dummies(divided_result, columns=string_hyperparams)
# Combine numeric hyperparams with the new one-hot encoded columns
encoded_columns = [col for col in divided_result_encoded.columns if col.startswith(tuple(string_hyperparams))]
hyperparams = numeric_hyperparams + encoded_columns
# Calculate correlations
correlations = divided_result_encoded[hyperparams].corr()
# Display correlation of hyperparameters with train/test performance columns
hyperparam_correlations = correlations.loc[hyperparams, correlation_columns]
hyperparam_correlations = hyperparam_correlations.fillna(0)
# Plotting the correlation heatmap
plt.figure(figsize=(12, 8))
ax = sns.heatmap(hyperparam_correlations, annot=True, cmap='viridis', fmt='.2f', cbar=True)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90, ha='right')
# Rotate y-axis labels to horizontal
#ax.set_yticklabels(ax.get_yticklabels(), rotation=0, va='center')
plt.title('Correlation of Hyperparameters with Train/Test Performance')
plt.show()
sns.set_style("whitegrid") # Choose your preferred style
pairplot = sns.pairplot(divided_result_encoded[hyperparams], hue='Test_best_model', palette='viridis')
# Adjust the figure size
pairplot.fig.set_size_inches(15, 15) # You can adjust the size as needed
for ax in pairplot.axes.flatten():
ax.set_xlabel(ax.get_xlabel(), rotation=90, ha='right') # X-axis labels vertical
#ax.set_ylabel(ax.get_ylabel(), rotation=0, va='bottom') # Y-axis labels horizontal
# Show the plot
plt.show()
1. Reporting Based on Best Training Performance:
clump_p1 1
clump_r2 0.1
clump_kb 200
p_window_size 200
p_slide_size 50
p_LD_threshold 0.25
pvalue 1
pvalue_AnnoPred 1
numberofpca 6
Train_pure_prs 1.47507e-06
Train_null_model 0.23001
Train_best_model 0.362624
Test_pure_prs 1.81997e-06
Test_null_model 0.118692
Test_best_model 0.3286
l1weight 0.1
tempalpha 0.1
Tier tier0
datafile test_pT_non_inf_betas_1.0.txt
Name: 79, dtype: object
2. Reporting Generalized Performance:
clump_p1 1
clump_r2 0.1
clump_kb 200
p_window_size 200
p_slide_size 50
p_LD_threshold 0.25
pvalue 1
pvalue_AnnoPred 1
numberofpca 6
Train_pure_prs 1.47507e-06
Train_null_model 0.23001
Train_best_model 0.362624
Test_pure_prs 1.81997e-06
Test_null_model 0.118692
Test_best_model 0.3286
l1weight 0.1
tempalpha 0.1
Tier tier0
datafile test_h2_inf_betas_1.0.txt
Difference 0.0340243
Sum 0.691225
Name: 19, dtype: object
3. Reporting the correlation of hyperparameters and the performance of 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model':
3. For string hyperparameters, we used one-hot encoding to find the correlation between string hyperparameters and 'Train_null_model', 'Train_pure_prs', 'Train_best_model', 'Test_pure_prs', 'Test_null_model', and 'Test_best_model'.
3. We performed this analysis for those hyperparameters that have more than one unique value.